Deep Learning Neural Networks

Deep Learning Neural Networks

Author: Daniel Graupe

Publisher: World Scientific Publishing Company

Published: 2016

Total Pages: 0

ISBN-13: 9789813146440

DOWNLOAD EBOOK

Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance. This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.


Deep Learning Neural Networks: Design And Case Studies

Deep Learning Neural Networks: Design And Case Studies

Author: Daniel Graupe

Publisher: World Scientific Publishing Company

Published: 2016-07-07

Total Pages: 280

ISBN-13: 9813146478

DOWNLOAD EBOOK

Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance.This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.


Neural Networks and Deep Learning

Neural Networks and Deep Learning

Author: Charu C. Aggarwal

Publisher: Springer

Published: 2018-08-25

Total Pages: 512

ISBN-13: 3319944630

DOWNLOAD EBOOK

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.


Development and Analysis of Deep Learning Architectures

Development and Analysis of Deep Learning Architectures

Author: Witold Pedrycz

Publisher: Springer Nature

Published: 2019-11-01

Total Pages: 296

ISBN-13: 3030317641

DOWNLOAD EBOOK

This book offers a timely reflection on the remarkable range of algorithms and applications that have made the area of deep learning so attractive and heavily researched today. Introducing the diversity of learning mechanisms in the environment of big data, and presenting authoritative studies in fields such as sensor design, health care, autonomous driving, industrial control and wireless communication, it enables readers to gain a practical understanding of design. The book also discusses systematic design procedures, optimization techniques, and validation processes.


Deep Learning: Concepts and Architectures

Deep Learning: Concepts and Architectures

Author: Witold Pedrycz

Publisher: Springer Nature

Published: 2019-10-29

Total Pages: 347

ISBN-13: 3030317560

DOWNLOAD EBOOK

This book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilayer architectures giving rise to tangible and functionally meaningful pieces of knowledge, and shows how the structural developments have become essential to the successful delivery of competitive practical solutions to real-world problems. The book also demonstrates how the architectural developments, which arise in the setting of deep learning, support detailed learning and refinements to the system design. Featuring detailed descriptions of the current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.


The Principles of Deep Learning Theory

The Principles of Deep Learning Theory

Author: Daniel A. Roberts

Publisher: Cambridge University Press

Published: 2022-05-26

Total Pages: 473

ISBN-13: 1316519333

DOWNLOAD EBOOK

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.


MATLAB Deep Learning

MATLAB Deep Learning

Author: Phil Kim

Publisher: Apress

Published: 2017-06-15

Total Pages: 162

ISBN-13: 1484228456

DOWNLOAD EBOOK

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.


Principles of Artificial Neural Networks

Principles of Artificial Neural Networks

Author: Daniel Graupe

Publisher: World Scientific

Published: 1997-05-01

Total Pages: 256

ISBN-13: 9789810241254

DOWNLOAD EBOOK

This textbook is intended for a first-year graduate course on Artificial Neural Networks. It assumes no prior background in the subject and is directed to MS students in electrical engineering, computer science and related fields, with background in at least one programming language or in a programming tool such as Matlab, and who have taken the basic undergraduate classes in systems or in signal processing.


Deep Neural Networks

Deep Neural Networks

Author: Yunong Zhang

Publisher: CRC Press

Published: 2019-03-19

Total Pages: 448

ISBN-13: 0429760981

DOWNLOAD EBOOK

Toward Deep Neural Networks: WASD Neuronet Models, Algorithms, and Applications introduces the outlook and extension toward deep neural networks, with a focus on the weights-and-structure determination (WASD) algorithm. Based on the authors’ 20 years of research experience on neuronets, the book explores the models, algorithms, and applications of the WASD neuronet, and allows reader to extend the techniques in the book to solve scientific and engineering problems. The book will be of interest to engineers, senior undergraduates, postgraduates, and researchers in the fields of neuronets, computer mathematics, computer science, artificial intelligence, numerical algorithms, optimization, simulation and modeling, deep learning, and data mining. Features Focuses on neuronet models, algorithms, and applications Designs, constructs, develops, analyzes, simulates and compares various WASD neuronet models, such as single-input WASD neuronet models, two-input WASD neuronet models, three-input WASD neuronet models, and general multi-input WASD neuronet models for function data approximations Includes real-world applications, such as population prediction Provides complete mathematical foundations, such as Weierstrass approximation, Bernstein polynomial approximation, Taylor polynomial approximation, and multivariate function approximation, exploring the close integration of mathematics (i.e., function approximation theories) and computers (e.g., computer algorithms) Utilizes the authors' 20 years of research on neuronets