Learning Deep Architectures for AI

Learning Deep Architectures for AI

Author: Yoshua Bengio

Publisher: Now Publishers Inc

Published: 2009

Total Pages: 145

ISBN-13: 1601982941

DOWNLOAD EBOOK

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.


Cognitive Internet of Things: Frameworks, Tools and Applications

Cognitive Internet of Things: Frameworks, Tools and Applications

Author: Huimin Lu

Publisher: Springer

Published: 2019-02-18

Total Pages: 504

ISBN-13: 3030049469

DOWNLOAD EBOOK

This book provides insights into the research in the fields of artificial intelligence in combination with Internet of Things (IoT) technologies. Today, the integration of artificial intelligence and IoT technologies is attracting considerable interest from both researchers and developers from academic fields and industries around the globe. It is foreseeable that the next generation of IoT research will focus on artificial intelligence/beyond artificial intelligence approaches. The rapidly growing numbers of artificial intelligence algorithms and big data solutions have significantly increased the number of potential applications for IoT technologies, but they have also created new challenges for the artificial intelligence community. This book shares the latest scientific advances in this area.


Recurrent Neural Networks for Short-Term Load Forecasting

Recurrent Neural Networks for Short-Term Load Forecasting

Author: Filippo Maria Bianchi

Publisher: Springer

Published: 2017-11-09

Total Pages: 74

ISBN-13: 3319703382

DOWNLOAD EBOOK

The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.


Scalable Algorithms for Data and Network Analysis

Scalable Algorithms for Data and Network Analysis

Author: Shang-Hua Teng

Publisher:

Published: 2016-05-04

Total Pages: 292

ISBN-13: 9781680831306

DOWNLOAD EBOOK

In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.


Strengthening Deep Neural Networks

Strengthening Deep Neural Networks

Author: Katy Warr

Publisher: "O'Reilly Media, Inc."

Published: 2019-07-03

Total Pages: 233

ISBN-13: 1492044903

DOWNLOAD EBOOK

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come


Traffic Incident Management Handbook

Traffic Incident Management Handbook

Author:

Publisher:

Published: 2000

Total Pages: 176

ISBN-13:

DOWNLOAD EBOOK

Intended to assist agencies responsible for incident management activities on public roadways to improve their programs and operations.Organized into three major sections: Introduction to incident management; organizing, planning, designing and implementing an incident management program; operational and technical approaches to improving the incident management process.


Urban Informatics

Urban Informatics

Author: Wenzhong Shi

Publisher: Springer Nature

Published: 2021-04-06

Total Pages: 941

ISBN-13: 9811589836

DOWNLOAD EBOOK

This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.


Proceedings of the 2022 International Conference on Green Building, Civil Engineering and Smart City

Proceedings of the 2022 International Conference on Green Building, Civil Engineering and Smart City

Author: Wei Guo

Publisher: Springer Nature

Published: 2022-09-07

Total Pages: 1285

ISBN-13: 9811952175

DOWNLOAD EBOOK

This book of the conference proceedings focuses on innovative design, technology and methods in the fields of building, civil engineering and smart city. It contains a large number of detailed design, construction and performance analysis charts, benefited to students, teachers, research scholars and other professionals in related fields. As well, readers will encounter new ideas for realizing more safe, intelligent and economical buildings.


Handbook on Artificial Intelligence and Transport

Handbook on Artificial Intelligence and Transport

Author: Hussein Dia

Publisher: Edward Elgar Publishing

Published: 2023-10-06

Total Pages: 649

ISBN-13: 1803929545

DOWNLOAD EBOOK

With AI advancements eliciting imminent changes to our transport systems, this enlightening Handbook presents essential research on this evolution of the transportation sector. It focuses on not only urban planning, but relevant themes in law and ethics to form a unified resource on the practicality of AI use.