Deep Learning for Hydrometeorology and Environmental Science

Deep Learning for Hydrometeorology and Environmental Science

Author: Taesam Lee

Publisher: Springer Nature

Published: 2021-01-27

Total Pages: 215

ISBN-13: 3030647773

DOWNLOAD EBOOK

This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited. Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare. This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) as well as the conventional artificial neural network model.


Modeling and Monitoring Extreme Hydrometeorological Events

Modeling and Monitoring Extreme Hydrometeorological Events

Author: Maftei, Carmen

Publisher: IGI Global

Published: 2024-01-10

Total Pages: 359

ISBN-13: 166848773X

DOWNLOAD EBOOK

In a world experiencing increasingly intense hydrometeorological events driven by climate change, the need for effective solutions is paramount. Modeling and Monitoring Extreme Hydrometeorological Events presents a cutting-edge exploration of the challenges posed by flash droughts and floods, offering innovative methodologies and tools to address these global issues. Through a combination of computer modeling, remote sensing, artificial intelligence, and case studies, this book provides a comprehensive framework for understanding and mitigating the impacts of extreme hydrometeorological events. It examines the rapid emergence of flash droughts, which bring devastating consequences to agriculture, water resources, ecosystems, and public health. The book also delves into the complex dynamics of flash floods, exploring their causes, impacts, and potential solutions. With a focus on water management, the book addresses knowledge gaps, provides adaptation and mitigation strategies, and emphasizes the importance of climate change considerations. It aims to empower scientists, policymakers, professionals, and educators to develop effective policies and decision-making frameworks to combat the increasing risks posed by extreme hydrometeorological events. Written by a diverse team of experts in hydrology, hydrometeorology, emergency management, civil engineering, and related fields, this book offers valuable insights and practical tools for researchers, professors, graduate students, policymakers, and professionals.


Artificial Intelligence Methods in the Environmental Sciences

Artificial Intelligence Methods in the Environmental Sciences

Author: Sue Ellen Haupt

Publisher: Springer Science & Business Media

Published: 2008-11-28

Total Pages: 418

ISBN-13: 1402091192

DOWNLOAD EBOOK

How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.


Computational Intelligence for Water and Environmental Sciences

Computational Intelligence for Water and Environmental Sciences

Author: Omid Bozorg-Haddad

Publisher: Springer Nature

Published: 2022-07-08

Total Pages: 547

ISBN-13: 9811925194

DOWNLOAD EBOOK

This book provides a comprehensive yet fresh perspective for the cutting-edge CI-oriented approaches in water resources planning and management. The book takes a deep dive into topics like meta-heuristic evolutionary optimization algorithms (e.g., GA, PSA, etc.), data mining techniques (e.g., SVM, ANN, etc.), probabilistic and Bayesian-oriented frameworks, fuzzy logic, AI, deep learning, and expert systems. These approaches provide a practical approach to understand and resolve complicated and intertwined real-world problems that often imposed serious challenges to traditional deterministic precise frameworks. The topic caters to postgraduate students and senior researchers who are interested in computational intelligence approach to issues stemming from water and environmental sciences.


Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences

Author: Gustau Camps-Valls

Publisher: John Wiley & Sons

Published: 2021-08-16

Total Pages: 436

ISBN-13: 1119646146

DOWNLOAD EBOOK

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.


Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences

Author: Gustau Camps-Valls

Publisher: John Wiley & Sons

Published: 2021-08-18

Total Pages: 436

ISBN-13: 1119646162

DOWNLOAD EBOOK

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.


Machine Learning in Chemical Safety and Health

Machine Learning in Chemical Safety and Health

Author: Qingsheng Wang

Publisher: John Wiley & Sons

Published: 2022-10-21

Total Pages: 324

ISBN-13: 1119817501

DOWNLOAD EBOOK

Introduces Machine Learning Techniques and Tools and Provides Guidance on How to Implement Machine Learning Into Chemical Safety and Health-related Model Development There is a growing interest in the application of machine learning algorithms in chemical safety and health-related model development, with applications in areas including property and toxicity prediction, consequence prediction, and fault detection. This book is the first to review the current status of machine learning implementation in chemical safety and health research and to provide guidance for implementing machine learning techniques and algorithms into chemical safety and health research. Written by an international team of authors and edited by renowned experts in the areas of process safety and occupational and environmental health, sample topics covered within the work include: An introduction to the fundamentals of machine learning, including regression, classification and cross-validation, and an overview of software and tools Detailed reviews of various applications in the areas of chemical safety and health, including flammability prediction, consequence prediction, asset integrity management, predictive nanotoxicity and environmental exposure assessment, and more Perspective on the possible future development of this field Machine Learning in Chemical Safety and Health serves as an essential guide on both the fundamentals and applications of machine learning for industry professionals and researchers in the fields of process safety, chemical safety, occupational and environmental health, and industrial hygiene.


Hydrometeorology

Hydrometeorology

Author: Kevin Sene

Publisher: Springer Science & Business Media

Published: 2009-12-12

Total Pages: 356

ISBN-13: 904813403X

DOWNLOAD EBOOK

This book describes recent developments in hydrometeorological forecasting techniques for a range of timescales, from short term to seasonal and longer terms. It conveniently brings together both meteorological and hydrological aspects in a single volume.


Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2

Author: M. Arif Wani

Publisher: Springer

Published: 2020-12-14

Total Pages: 300

ISBN-13: 9789811567582

DOWNLOAD EBOOK

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.