Deep Learning-Based Approaches for Sentiment Analysis

Deep Learning-Based Approaches for Sentiment Analysis

Author: Basant Agarwal

Publisher: Springer Nature

Published: 2020-01-24

Total Pages: 326

ISBN-13: 9811512167

DOWNLOAD EBOOK

This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.


Deep Learning-Based Approaches for Sentiment Analysis

Deep Learning-Based Approaches for Sentiment Analysis

Author: Basant Agarwal

Publisher: Springer

Published: 2021-01-25

Total Pages: 319

ISBN-13: 9789811512186

DOWNLOAD EBOOK

This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.


Deep Learning-based Approaches for Sentiment Analysis

Deep Learning-based Approaches for Sentiment Analysis

Author:

Publisher:

Published: 2020

Total Pages: 326

ISBN-13: 9789811512179

DOWNLOAD EBOOK

This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.


Deep Learning Applications for Cyber-Physical Systems

Deep Learning Applications for Cyber-Physical Systems

Author: Mundada, Monica R.

Publisher: IGI Global

Published: 2021-12-17

Total Pages: 293

ISBN-13: 1799881636

DOWNLOAD EBOOK

Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.


Examining the Impact of Deep Learning and IoT on Multi-Industry Applications

Examining the Impact of Deep Learning and IoT on Multi-Industry Applications

Author: Raut, Roshani

Publisher: IGI Global

Published: 2021-01-29

Total Pages: 304

ISBN-13: 1799875172

DOWNLOAD EBOOK

Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.


Data Mining and Analysis in the Engineering Field

Data Mining and Analysis in the Engineering Field

Author: Vishal Bhatnagar

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9781466660861

DOWNLOAD EBOOK

"This book explores current research in data mining, including the important trends and patterns and their impact in fields such as software engineering, and focuses on modern techniques as well as past experiences"--


Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R

Author: Emil Hvitfeldt

Publisher: CRC Press

Published: 2021-10-22

Total Pages: 402

ISBN-13: 1000461971

DOWNLOAD EBOOK

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.


Handbook of Research on Emerging Trends and Applications of Machine Learning

Handbook of Research on Emerging Trends and Applications of Machine Learning

Author: Solanki, Arun

Publisher: IGI Global

Published: 2019-12-13

Total Pages: 674

ISBN-13: 1522596453

DOWNLOAD EBOOK

As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.


Sentiment Analysis

Sentiment Analysis

Author: Bing Liu

Publisher: Cambridge University Press

Published: 2020-10-15

Total Pages: 451

ISBN-13: 1108787282

DOWNLOAD EBOOK

Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.


Intelligent Techniques and Applications in Science and Technology

Intelligent Techniques and Applications in Science and Technology

Author: Subhojit Dawn

Publisher: Springer Nature

Published: 2020-03-02

Total Pages: 1126

ISBN-13: 3030423638

DOWNLOAD EBOOK

This book provides innovative ideas on achieving sustainable development and using green technologies to conserve our ecosystem. Innovation is the successful exploitation of a new idea. Through innovation, we can achieve MORE while using LESS. Innovations in science & technology will not only help mankind as a whole, but also contribute to the economic growth of individual countries. It is essential that the global problem of environmental degradation be addressed immediately, and thus, we need to rethink the concept of sustainable development. Indeed, new environmentally friendly technologies are fundamental to attaining sustainable development. The book shares a wealth of innovative green technological ideas on how to preserve and improve the quality of the environment, and how to establish a more resource-efficient and sustainable society. The book provides an interdisciplinary approach to addressing various technical issues and capitalizing on advances in computing & optimization for scientific & technological development, smart information, communication, bio-monitoring, smart cities, food quality assessment, waste management, environmental aspects, alternative energies, sustainable infrastructure development, etc. In short, it offers valuable information and insights for budding engineers, researchers, upcoming young minds and industry professionals, promoting awareness for recent advances in the various fields mentioned above.