Deep Carbon

Deep Carbon

Author: Beth N. Orcutt

Publisher: Cambridge University Press

Published: 2020

Total Pages: 687

ISBN-13: 1108477496

DOWNLOAD EBOOK

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.


From Crust to Core

From Crust to Core

Author: Simon Mitton

Publisher: Cambridge University Press

Published: 2020-12-17

Total Pages: 383

ISBN-13: 1108426697

DOWNLOAD EBOOK

A fascinating historical account of the emergence and development of the new interdisciplinary field of deep carbon science.


Deep Carbon in Earth: Early Career Scientist Contributions to the Deep Carbon Observatory

Deep Carbon in Earth: Early Career Scientist Contributions to the Deep Carbon Observatory

Author: Donato Giovannelli

Publisher: Frontiers Media SA

Published: 2017-11-27

Total Pages: 223

ISBN-13: 2889453634

DOWNLOAD EBOOK

Since its inception, the Deep Carbon Observatory (DCO) has coalesced a multidisciplinary and international group of researchers focused on understanding and quantifying Earth’s deep carbon budget. Carbon is the fourth most abundant element in the universe, and understanding carbon chemistry under a variety of environmental conditions impacts all aspects of planetary sciences, including planet formation, the form and function of planetary interiors, and the origin and diversity of life. DCO recognizes that is integrating and promoting the contributions of early career scientists are integral to the advancement of knowledge regarding the quantities, movements, origins, and forms of Earth’s deep carbon through field, experimental, analytical, and computational research. Early career scientists represent the future of deep carbon science and contribute substantially to ongoing research by implementing innovative ideas, challenging traditional working schemes, and bringing a globally interconnected perspective to the scientific community. This research topic highlights the contributions at the forefront of deep carbon research by DCO Early Career Scientist community. The manuscripts of this Frontiers e-volume bear evidence of the rapid advances in deep carbon science, and highlights the importance of approaching this field from a plethora of different angles integrating disciplines as diverse as mineralogy, geochemistry and microbiology. This integration is fundamental in understanding the movements and transformations of carbon across its deep cycle.


Carbon in Earth's Interior

Carbon in Earth's Interior

Author: Craig E. Manning

Publisher: John Wiley & Sons

Published: 2020-04-03

Total Pages: 373

ISBN-13: 1119508231

DOWNLOAD EBOOK

Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.


Science of Carbon Storage in Deep Saline Formations

Science of Carbon Storage in Deep Saline Formations

Author: Pania Newell

Publisher: Elsevier

Published: 2018-09-10

Total Pages: 0

ISBN-13: 9780128127520

DOWNLOAD EBOOK

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.


Legal Pathways to Deep Decarbonization in the United States

Legal Pathways to Deep Decarbonization in the United States

Author: Michael Gerrard

Publisher:

Published: 2019-03-18

Total Pages: 1056

ISBN-13: 9781585761975

DOWNLOAD EBOOK

Legal Pathways to Deep Decarbonization in the United States provides a "legal playbook" for deep decarbonization in the United States, identifying well over 1,000 legal options for enabling the United States to address one of the greatest problems facing this country and the rest of humanity. The book is based on two reports by the Deep Decarbonization Pathways Project (DDPP) that explain technical and policy pathways for reducing U.S. greenhouse gas emissions by at least 80% from 1990 levels by 2050. This 80x50 target and similarly aggressive carbon abatement goals are often referred to as deep decarbonization, distinguished because it requires systemic changes to the energy economy. Legal Pathways explains the DDPP reports and then addresses in detail 35 different topics in as many chapters. These 35 chapters cover energy efficiency, conservation, and fuel switching; electricity decarbonization; fuel decarbonization; carbon capture and negative emissions; non-carbon dioxide climate pollutants; and a variety of cross-cutting issues. The legal options involve federal, state, and local law, as well as private governance. Authors were asked to include all options, even if they do not now seem politically realistic or likely, giving Legal Pathways not just immediate value, but also value over time. While both the scale and complexity of deep decarbonization are enormous, this book has a simple message: deep decarbonization is achievable in the United States using laws that exist or could be enacted. These legal tools can be used with significant economic, social, environmental, and national security benefits. Book Reviews "A growing chorus of Americans understand that climate change is the biggest public health, economic, and national security challenge our families have ever faced and they rightly ask, ''What can anyone do?'' Well, this book makes that answer very clear: we can do a lot as individuals, businesses, communities, cities, states, and the federal government to fight climate change. The legal pathways are many and the barriers are not insurmountable. In short, the time is now to dig deep and decarbonize." --Gina McCarthy, Former U.S. Environmental Protection Agency Administrator "Legal Pathways to Deep Decarbonization in the United States sets forth over 1,000 solutions for federal, state, local, and private actors to tackle climate change. This book also makes the math for Congress clear: with hundreds of policy options and 12 years to stop the worst impacts of climate change, now is the time to find a path forward." --Sheldon Whitehouse, U.S. Senator, Rhode Island "This superb work comes at a critical time in the history of our planet. As we increasingly face the threat and reality of climate change and its inevitable impact on our most vulnerable populations, this book provides the best and most current thinking on viable options for the future to address and ameliorate a vexing, worldwide challenge of extraordinary magnitude. Michael Gerrard and John Dernbach are two of the most distinguished academicians in the country on these issues, and they have assembled leading scholars and practitioners to provide a possible path forward. With 35 chapters and over 1,000 legal options, the book is like a menu of offerings for public consumption, showing that real actions can be taken, now and in the future, to achieve deep decarbonization. I recommend the book highly." --John C. Cruden, Past Assistant Attorney General, Environment and Natural Resources Division, U.S. Department of Justice "This book proves that we already know what to do about climate change, if only we had the will to do it. The path to decarbonization depends as much on removing legal impediments and changing outdated incentive systems as it does on imposing new regulations. There are ideas here for every sector of the economy, for every level of government, and for business and nongovernmental organizations, too, all of which should be on the table for any serious country facing the most serious of challenges. By giving us a sense of the possible, Gerrard and Dernbach and their fine authors seem to be saying two things: (1) do something; and (2) it''s possible. What a timely message, and what a great collection." --Jody Freeman, Archibald Cox Professor of Law and Founding Director of the Harvard Law School Environmental and Energy Law Program


Carbon in Earth

Carbon in Earth

Author: Robert M. Hazen

Publisher: ISSN

Published: 2013

Total Pages: 722

ISBN-13:

DOWNLOAD EBOOK

"Carbon in Earth is an outgrowth of the Deep Carbon Observatory (DCO), a 10-year international research effort dedicated to achieving transformational understanding of the chemical and biological roles of carbon in Earth (http://dco.ciw.edu). Hundreds of researchers from 6 continents, including all 51 coauthors of this volume, are now engaged in the DCO effort. This volume serves as a benchmark for our present understanding of Earth's carbon - both what we know and what we have yet to learn. Ultimately, the goal is to produce a second, companion volume to mark the progress of this decadal initiative.


Magma Redox Geochemistry

Magma Redox Geochemistry

Author: Roberto Moretti

Publisher: John Wiley & Sons

Published: 2021-10-26

Total Pages: 436

ISBN-13: 111947325X

DOWNLOAD EBOOK

Explores the many facets of redox exchanges that drive magma's behavior and evolution, from the origin of the Earth until today The redox state is one of the master variables behind the Earth's forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so far Redox processes from Earth’s accretion to global geodynamics Redox evolution from the magma source to volcanic emissions Redox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.