Decision Support Systems V – Big Data Analytics for Decision Making

Decision Support Systems V – Big Data Analytics for Decision Making

Author: Boris Delibašić

Publisher: Springer

Published: 2015-05-18

Total Pages: 124

ISBN-13: 3319185330

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Conference on Decision Support Systems Technology, ICDSST 2015, held in Belgrade, Serbia, in May 2015. The theme of the event was “Big Data Analytics for Decision-Making” and it was organized by the EURO (Association of European Operational Research Societies) working group of Decision Support Systems (EWG-DSS). The eight papers presented in this book were selected out of 26 submissions after being carefully reviewed by at least three internationally known experts from the ICDSST 2015 Program Committee and external invited reviewers. The selected papers are representative of current and relevant research activities in the area of decision support systems, such as decision analysis for enterprise systems and non-hierarchical networks, integrated solutions for decision support and knowledge management in distributed environments, decision support system evaluations and analysis through social networks, and decision support system applications in real-world environments. The volume is completed by an additional invited paper on big data decision-making use cases.


Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering

Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2021-05-28

Total Pages: 1538

ISBN-13: 1799890244

DOWNLOAD EBOOK

Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.


Big Data Processing Using Spark in Cloud

Big Data Processing Using Spark in Cloud

Author: Mamta Mittal

Publisher: Springer

Published: 2018-06-16

Total Pages: 275

ISBN-13: 9811305501

DOWNLOAD EBOOK

The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.


Healthcare Data Analytics and Management

Healthcare Data Analytics and Management

Author: Nilanjan Dey

Publisher: Academic Press

Published: 2018-11-15

Total Pages: 342

ISBN-13: 0128156368

DOWNLOAD EBOOK

Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges


Multiple Criteria Decision Making

Multiple Criteria Decision Making

Author: Anand J. Kulkarni

Publisher: Springer Nature

Published: 2022-02-14

Total Pages: 264

ISBN-13: 9811674140

DOWNLOAD EBOOK

The book discusses state-of-the-art applications and methodologies of the Multiple Criteria Decision Making (MCDM) techniques and approaches. The book focuses on critical literature, underlying principles of methods and models, solution approaches, testing and validation, real-world applications, case studies, etc. The book helps evaluate strategic decision-making through advanced MCDM and integrated approaches of AI, big data, and IoT to provide realistic and robust solutions to the current problems. The book will be a guideline to the potential MCDM researchers about the choice of approaches for dealing with the complexities and modalities. The contributions of the book help readers to explore new avenues leading towards multidisciplinary research discussions. This book will be interesting for engineers, scientists, and students studying/working in the related areas.


Big Data

Big Data

Author: Min Chen

Publisher: Springer

Published: 2014-05-05

Total Pages: 100

ISBN-13: 331906245X

DOWNLOAD EBOOK

This Springer Brief provides a comprehensive overview of the background and recent developments of big data. The value chain of big data is divided into four phases: data generation, data acquisition, data storage and data analysis. For each phase, the book introduces the general background, discusses technical challenges and reviews the latest advances. Technologies under discussion include cloud computing, Internet of Things, data centers, Hadoop and more. The authors also explore several representative applications of big data such as enterprise management, online social networks, healthcare and medical applications, collective intelligence and smart grids. This book concludes with a thoughtful discussion of possible research directions and development trends in the field. Big Data: Related Technologies, Challenges and Future Prospects is a concise yet thorough examination of this exciting area. It is designed for researchers and professionals interested in big data or related research. Advanced-level students in computer science and electrical engineering will also find this book useful.


Data-Driven Business Intelligence Systems for Socio-Technical Organizations

Data-Driven Business Intelligence Systems for Socio-Technical Organizations

Author: Keikhosrokiani, Pantea

Publisher: IGI Global

Published: 2024-04-09

Total Pages: 514

ISBN-13:

DOWNLOAD EBOOK

The convergence of modern technology and social dynamics have shaped the very fabric of today’s organizations, making the role of Business Intelligence (BI) profoundly significant. Data-Driven Business Intelligence Systems for Socio-Technical Organizations delves into the heart of this transformative realm, offering an academic exploration of the tools, strategies, and methodologies that propel enterprises toward data-driven decision-making excellence. Socio-technical organizations, with their intricate interplay between human and technological components, require a unique approach to BI. This book embarks on a comprehensive journey, revealing how BI tools empower these entities to decipher the complexities of their data landscape. From user behavior to social interactions, technological systems to environmental factors, this work sheds light on the multifaceted sources of information that inform organizational strategies. Decision-makers within socio-technical organizations leverage BI insights to discern patterns, spot trends, and uncover correlations that influence operations and the intricate social dynamics within their entities. Research covering real-time monitoring and predictive analytics equips these organizations to respond swiftly to demands and anticipate future trends, harnessing the full potential of data. The book delves into their design, development, and architectural nuances, illuminating these concepts through case studies. This book is ideal for business executives, entrepreneurs, data analysts, marketers, government officials, educators, and researchers.


EURO Working Group on DSS

EURO Working Group on DSS

Author: Jason Papathanasiou

Publisher: Springer Nature

Published: 2021-08-09

Total Pages: 416

ISBN-13: 3030703770

DOWNLOAD EBOOK

This book recapitulates the major developments in Decision Support Systems (DSS) over the last 30 years in order to evaluate the research areas of decision making and in which direction the field should proceed. As it attempts to find a consensus about the next steps for the future of DSS research, the book also enforces the trends and new technologies currently in use. The book examines topics such as decision analysis for enterprise systems and non-hierarchical networks, integrated solutions for decision support and knowledge management in distributed environments, decision support system evaluation and analysis through social networks, and e-learning and its application to real environments. It clearly presents the evidence to support their cases and attempts to promote an extensive and objective discussion. In addition, the book also reflects on approaches to dead-end ideas and failures in DSS to better understand the lessons learned. The contributions for this book have been written by thought leaders and influential researchers from the EURO Working Group of Decision Support Systems (EWG-DSS).


Big Data Management

Big Data Management

Author: Fausto Pedro García Márquez

Publisher: Springer

Published: 2016-11-15

Total Pages: 274

ISBN-13: 3319454986

DOWNLOAD EBOOK

This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.