For MIS specialists and non-specialists alike, this text is a comprehensive, readable, understandable guide to the concepts and applications of decision support systems.
Praise for the First Edition "This is the most usable decision support systems text. [i]t is far better than any other text in the field" —Computing Reviews Computer-based systems known as decision support systems (DSS) play a vital role in helping professionals across various fields of practice understand what information is needed, when it is needed, and in what form in order to make smart and valuable business decisions. Providing a unique combination of theory, applications, and technology, Decision Support Systems for Business Intelligence, Second Edition supplies readers with the hands-on approach that is needed to understand the implications of theory to DSS design as well as the skills needed to construct a DSS. This new edition reflects numerous advances in the field as well as the latest related technological developments. By addressing all topics on three levels—general theory, implications for DSS design, and code development—the author presents an integrated analysis of what every DSS designer needs to know. This Second Edition features: Expanded coverage of data mining with new examples Newly added discussion of business intelligence and transnational corporations Discussion of the increased capabilities of databases and the significant growth of user interfaces and models Emphasis on analytics to encourage DSS builders to utilize sufficient modeling support in their systems A thoroughly updated section on data warehousing including architecture, data adjustment, and data scrubbing Explanations and implications of DSS differences across cultures and the challenges associated with transnational systems Each chapter discusses various aspects of DSS that exist in real-world applications, and one main example of a DSS to facilitate car purchases is used throughout the entire book. Screenshots from JavaScript® and Adobe® ColdFusion are presented to demonstrate the use of popular software packages that carry out the discussed techniques, and a related Web site houses all of the book's figures along with demo versions of decision support packages, additional examples, and links to developments in the field. Decision Support Systems for Business Intelligence, Second Edition is an excellent book for courses on information systems, decision support systems, and data mining at the advanced undergraduate and graduate levels. It also serves as a practical reference for professionals working in the fields of business, statistics, engineering, and computer technology.
Decision support systems have experienced a marked increase in attention and importance over the past 25 years. The aim of this book is to survey the decision support system (DSS) field – covering both developed territory and emergent frontiers. It will give the reader a clear understanding of fundamental DSS concepts, methods, technologies, trends, and issues. It will serve as a basic reference work for DSS research, practice, and instruction. To achieve these goals, the book has been designed according to a ten-part structure, divided in two volumes with chapters authored by well-known, well-versed scholars and practitioners from the DSS community.
Medical informatics has revolutionized healthcare in recent years, and one of the major challenges now faced by health professionals everywhere is the further improvement of healthcare by making more effective use of the data from biomedical informatics, not least for education and decision support. This book presents the 52 full papers (accepted from 95 initial submissions) delivered at the Special Topic Conference of the European Federation for Medical Informatics (EFMI STC 2018), held in Zagreb, Croatia, on 15 and 16 October 2018. The EFMI STC is one of Europe`s leading conferences for the sharing of current professional and scientific knowledge in health informatics processes, and the topics covered here have been broadly divided into two sections; decision support and education. Offering an overview of current medical informatics research, this book will undoubtedly prove invaluable for the professional development of healthcare practitioners, as well as contributing to knowledge sustainability within the field of medical informatics.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Foundations of Decision Support Systems focuses on the frameworks, strategies, and techniques involved in decision support systems (DSS). The publication first takes a look at information processing, decision making, and decision support; frameworks for organizational information processing and decision making; and representative decision support systems. Discussions focus on classification scheme for DSS, abilities required for decision making, division of information-processing labor within an organization, and decision support. The text then elaborates on ideas in decision support, formalizations of purposive systems, and conceptual and operational constructs for building a data base knowledge system. The book takes a look at building a data base knowledge system, language systems for data base knowledge systems, and problem-processing systems for data base knowledge systems. Topics include problem processors for computationally oriented DSS, major varieties of logical data structures, and indirect associations among concepts. The manuscript also examines operationalizing modeling knowledge in terms of predicate calculus; combining the data base and formal logic approaches; and the language and knowledge systems of a DSS based on formal logic. The publication is a valuable reference for researchers interested in decision support systems.
Written by nationally and internationally recognised experts on the design, evaluation and application of such systems, this book examines the impact of practitioner and patient use of computer-based diagnostic tools. It serves simultaneously as a resource book on diagnostic systems for informatics specialists; a textbook for teachers or students in health or medical informatics training programs; and as a comprehensive introduction for clinicians, with or without expertise in the applications of computers in medicine, who are interested in learning about current developments in computer-based diagnostic systems. Designed for a broad range of clinicians in need of decision support.
This book provides a comprehensive examination of the various aspects of SDSS evolution, components, architecture, and implementation. Integrating research from a variety of disciplines, it supplies a complete overview of SDSS technologies and their application. This groundbreaking reference provides thorough coverage of the roots of SDSS. It explains the core principles of SDSS, how to use them in various decision making contexts, and how to design and develop them using readily available enabling technologies and commercial tools.