This book is developed from and includes the presentations of leading international experts and scholars in the 12-14 July, 2006 Wingspread Workshop. With urban waters as a focal point, this book will explore the links between urban water quality and hydrology, and the broader concepts of green cities and smart growth. It also addresses legal and social barriers to urban ecological sustainability and proposes practical ways to overcome those barriers. Cities of the Future features chapters containing visionary concepts on how to ensure that cities and their water resources become ecologically sustainable and are able to provide clean water for all beneficial uses. The book links North American and Worldwide experience and approaches. The book is primarily a professional reference aimed at a wide interdisciplinary audience, including universities, consultants, environmental advocacy groups and legal environmental professionals.
Urban flooding is an increasing challenge today to the expanding cities and towns of developing countries. This Handbook is a state-of-the art, user-friendly operational guide that shows decision makers and specialists how to effectively manage the risk of floods in rapidly urbanizing settings--and within the context of a changing climate.
Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.
This handbook is designed to guide public sector managers and development practitioners through the process of large-scale housing reconstruction after major disasters, based on the experiences of recent reconstruction programs in Aceh (Indonesia), Sri Lanka, Pakistan, Gujarat (India) and Bam (Iran).
This book explores policy, legal, and practice implications regarding the emerging field of disaster justice, using case studies of floods, bushfires, heatwaves, and earthquakes in Australia and Southern and South-east Asia. It reveals geographic locational and social disadvantage and structural inequities that lead to increased risk and vulnerability to disaster, and which impact ability to recover post-disaster. Written by multidisciplinary disaster researchers, the book addresses all stages of the disaster management cycle, demonstrating or recommending just approaches to preparation, response and recovery. It notably reveals how procedural, distributional and interactional aspects of justice enhance resilience, and offers a cutting edge analysis of disaster justice for managers, policy makers, researchers in justice, climate change or emergency management.
This first of three volumes starts with a short introduction to historical metrology as a scientific discipline and goes on with an anthology of acient and modern measurement systems of all kind, scientific measures, units of time, weights, currencies etc. It concludes with an exhaustive list of references. Units of measurement are of vital importance in every civilization through history. Since the early ages, man has through necessity devised various measures to assist him in everyday life. They have enabled and continue to enable us to trade in commonly and equitably understood amounts, and to investigate, understand, and control the chemical, physical, and biological processes of the natural world. The essence of the work is an alphabetically ordered, comprehensive list of measurement nomenclature, units and scales. It provides an understanding of almost all quantitative expressions observed in all imaginable situations, including spelling variants and the abbreviations and symbols for units, and various acronyms used in metrology. It will be of use not only to historians of science and technology, but also to economic and social historians and should be in every major academic and national library as standard reference work on the topic.
Developments in Earthquake Engineering have focussed on the capacity and response of structures. They often overlook the importance of seismological knowledge to earthquake-proofing of design. It is not enough only to understand the anatomy of the structure, you must also appreciate the nature of the likely earthquake.Seismic design, as detailed in
* A single-source, on-the-job resource to help interior designers and architects solve any space planning problem * Simplifies code compliance (International Building Code, ADA, and more) * Includes hundreds of plans and details for every building type * Checklists and guidelines throughout
This encyclopedia will be an essential resource for our times, reflecting the fact that we currently are living in an expanding data-driven world. Technological advancements and other related trends are contributing to the production of an astoundingly large and exponentially increasing collection of data and information, referred to in popular vernacular as “Big Data.” Social media and crowdsourcing platforms and various applications ― “apps” ― are producing reams of information from the instantaneous transactions and input of millions and millions of people around the globe. The Internet-of-Things (IoT), which is expected to comprise tens of billions of objects by the end of this decade, is actively sensing real-time intelligence on nearly every aspect of our lives and environment. The Global Positioning System (GPS) and other location-aware technologies are producing data that is specific down to particular latitude and longitude coordinates and seconds of the day. Large-scale instruments, such as the Large Hadron Collider (LHC), are collecting massive amounts of data on our planet and even distant corners of the visible universe. Digitization is being used to convert large collections of documents from print to digital format, giving rise to large archives of unstructured data. Innovations in technology, in the areas of Cloud and molecular computing, Artificial Intelligence/Machine Learning, and Natural Language Processing (NLP), to name only a few, also are greatly expanding our capacity to store, manage, and process Big Data. In this context, the Encyclopedia of Big Data is being offered in recognition of a world that is rapidly moving from gigabytes to terabytes to petabytes and beyond. While indeed large data sets have long been around and in use in a variety of fields, the era of Big Data in which we now live departs from the past in a number of key respects and with this departure comes a fresh set of challenges and opportunities that cut across and affect multiple sectors and disciplines, and the public at large. With expanded analytical capacities at hand, Big Data is now being used for scientific inquiry and experimentation in nearly every (if not all) disciplines, from the social sciences to the humanities to the natural sciences, and more. Moreover, the use of Big Data has been well established beyond the Ivory Tower. In today’s economy, businesses simply cannot be competitive without engaging Big Data in one way or another in support of operations, management, planning, or simply basic hiring decisions. In all levels of government, Big Data is being used to engage citizens and to guide policy making in pursuit of the interests of the public and society in general. Moreover, the changing nature of Big Data also raises new issues and concerns related to, for example, privacy, liability, security, access, and even the veracity of the data itself. Given the complex issues attending Big Data, there is a real need for a reference book that covers the subject from a multi-disciplinary, cross-sectoral, comprehensive, and international perspective. The Encyclopedia of Big Data will address this need and will be the first of such reference books to do so. Featuring some 500 entries, from "Access" to "Zillow," the Encyclopedia will serve as a fundamental resource for researchers and students, for decision makers and leaders, and for business analysts and purveyors. Developed for those in academia, industry, and government, and others with a general interest in Big Data, the encyclopedia will be aimed especially at those involved in its collection, analysis, and use. Ultimately, the Encyclopedia of Big Data will provide a common platform and language covering the breadth and depth of the topic for different segments, sectors, and disciplines.