This well-respected introduction to statistics and statistical theory covers data processing, probability and random variables, utility and descriptive statistics, computation of Bayes strategies, models, testing hypotheses, and much more. 1959 edition.
A syllabus-specific textbook providing worked examples, exam-level questions and many practice exercises, in accordance to the new Edexcel AS and Advanced GCE specification.
Revision book written specifically for the Edexcel AS and A Level exams offering: worked examination questions and examples with hints on answering examination questions successfully; test-yourself section; key points reinforcing what students have learned; and answers to all questions.
A syllabus-specific textbook providing worked examples, exam-level questions and many practice exercises, in accordance to the new Edexcel AS and Advanced GCE specification.
Evaluating statistical procedures through decision and game theory, as first proposed by Neyman and Pearson and extended by Wald, is the goal of this problem-oriented text in mathematical statistics. First-year graduate students in statistics and other students with a background in statistical theory and advanced calculus will find a rigorous, thorough presentation of statistical decision theory treated as a special case of game theory. The work of Borel, von Neumann, and Morgenstern in game theory, of prime importance to decision theory, is covered in its relevant aspects: reduction of games to normal forms, the minimax theorem, and the utility theorem. With this introduction, Blackwell and Professor Girshick look at: Values and Optimal Strategies in Games; General Structure of Statistical Games; Utility and Principles of Choice; Classes of Optimal Strategies; Fixed Sample-Size Games with Finite Ω and with Finite A; Sufficient Statistics and the Invariance Principle; Sequential Games; Bayes and Minimax Sequential Procedures; Estimation; and Comparison of Experiments. A few topics not directly applicable to statistics, such as perfect information theory, are also discussed. Prerequisites for full understanding of the procedures in this book include knowledge of elementary analysis, and some familiarity with matrices, determinants, and linear dependence. For purposes of formal development, only discrete distributions are used, though continuous distributions are employed as illustrations. The number and variety of problems presented will be welcomed by all students, computer experts, and others using statistics and game theory. This comprehensive and sophisticated introduction remains one of the strongest and most useful approaches to a field which today touches areas as diverse as gambling and particle physics.
In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.
Violence prevention begins with straight talk. Studies have repeatedly shown connections between chemical dependence & every form of violent behavior, from domestic abuse to murder. Features the frank testimonials of 19 teens with significant chemical dependency issues who range in age from 13 to 22.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.