Decay of the Fourier Transform

Decay of the Fourier Transform

Author: Alex Iosevich

Publisher: Springer

Published: 2014-10-01

Total Pages: 226

ISBN-13: 3034806256

DOWNLOAD EBOOK

The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.​


Fourier Analysis and Its Applications

Fourier Analysis and Its Applications

Author: G. B. Folland

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 447

ISBN-13: 0821847902

DOWNLOAD EBOOK

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.


Fourier Analysis and Convexity

Fourier Analysis and Convexity

Author: Luca Brandolini

Publisher: Springer Science & Business Media

Published: 2011-04-27

Total Pages: 268

ISBN-13: 0817681728

DOWNLOAD EBOOK

Explores relationship between Fourier Analysis, convex geometry, and related areas; in the past, study of this relationship has led to important mathematical advances Presents new results and applications to diverse fields such as geometry, number theory, and analysis Contributors are leading experts in their respective fields Will be of interest to both pure and applied mathematicians


Decay of One-dimensional Averages of Fourier Transforms of Measures in the Plane

Decay of One-dimensional Averages of Fourier Transforms of Measures in the Plane

Author: Fida Michel Nashef

Publisher:

Published: 2011

Total Pages: 172

ISBN-13:

DOWNLOAD EBOOK

Consider a positive compactly supported measure in Rn, and alpha between zero and n. We are interested in obtaining decay estimates on the integral over the sphere of the Fourier transform of the above measure. Such decay estimates have important applications to the distance set problem in the area of geometric measure theory. This connection to geometric measure theory is the focus of the first two chapters of the thesis, where we also prove Sjolin's decay estimate in Rn. Our work here follows [5], [6], [7], [8], [9], and [10]. In the third chapter of the thesis, we use the Fourier restriction technology developed in in [1] and [2] to improve on Sjolin's result in dimension n=2. In the fourth chapter of the thesis, we study the analogous problem when the parabola replaces the unit circle. Our work here follows the paper [3].


Fourier Analysis

Fourier Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2011-02-11

Total Pages: 326

ISBN-13: 1400831237

DOWNLOAD EBOOK

This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.


Fourier Transforms in the Complex Domain

Fourier Transforms in the Complex Domain

Author: Raymond Edward Alan Christopher Paley

Publisher: American Mathematical Soc.

Published: 1934-12-31

Total Pages: 196

ISBN-13: 0821810197

DOWNLOAD EBOOK

With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of Munz and Szasz concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form $\sum^N_1A_ne^{i\lambda_nx}$, lacunary series, generalized harmonic analysis in the complex domain, the zeros of random functions, and many others.


A Guide to Distribution Theory and Fourier Transforms

A Guide to Distribution Theory and Fourier Transforms

Author: Robert S. Strichartz

Publisher: World Scientific

Published: 2003

Total Pages: 238

ISBN-13: 9789812384300

DOWNLOAD EBOOK

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.


Lectures on the Fourier Transform and Its Applications

Lectures on the Fourier Transform and Its Applications

Author: Brad G. Osgood

Publisher: American Mathematical Soc.

Published: 2019-01-18

Total Pages: 689

ISBN-13: 1470441918

DOWNLOAD EBOOK

This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.