Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws
Author: James Glimm
Publisher: American Mathematical Soc.
Published: 1970
Total Pages: 134
ISBN-13: 0821818015
DOWNLOAD EBOOKRead and Download eBook Full
Author: James Glimm
Publisher: American Mathematical Soc.
Published: 1970
Total Pages: 134
ISBN-13: 0821818015
DOWNLOAD EBOOKAuthor: Peter D. Lax
Publisher: SIAM
Published: 1973-01-01
Total Pages: 55
ISBN-13: 0898711770
DOWNLOAD EBOOKThis book deals with the mathematical side of the theory of shock waves. The author presents what is known about the existence and uniqueness of generalized solutions of the initial value problem subject to the entropy conditions. The subtle dissipation introduced by the entropy condition is investigated and the slow decay in signal strength it causes is shown.
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
Published: 1981
Total Pages: 86
ISBN-13: 0821822403
DOWNLOAD EBOOKWe consider a system of n conservation laws: [partial derivative/boundary/degree of a polynomial symbol]∂u [over] [partial derivative/boundary/degree of a polynomial symbol]∂t + [partial derivative/boundary/degree of a polynomial symbol]∂f(u) [over] [partial derivative/boundary/degree of a polynomial symbol]∂x = 0. The system is assumed to be strictly hyperbolic, but not necessarily genuinely nonlinear in the sense of Peter Lax (Hyperbolic systems of conservation laws, 1957). Our purpose is to study the regularity, large-time behavior and the approximation of the solution of the initial-value problem. Our analysis is based on the random choice method, using the solution of the Riemann problem, as building blocks.
Author: Constantine M. Dafermos
Publisher: Springer
Published: 2016-05-26
Total Pages: 852
ISBN-13: 3662494515
DOWNLOAD EBOOKOLD TEXT 4th Edition to be replaced: This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
Author: J.M. Ball
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 476
ISBN-13: 9400971893
DOWNLOAD EBOOKThis volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. pym (Sheffield) . The programme of the institute consisted of a number of courses of expository lectures, together with special sessions on different topics. It is a pleasure to thank all the lecturers for the care they took in the preparation of their talks, and S.S. Antman, A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of their special sessions. The institute was made possible by financial support from NATO, the London Mathematical Society, the u.S. Army Research Office, the u.S. Army European Research Office, and the u.S. National Science Foundation. The lectures were held in the Mathematical Institute of the University of Oxford, and residential accommodation was provided at Hertford College.
Author: Gui-Qiang G. Chen
Publisher: Springer Science & Business Media
Published: 2013-09-18
Total Pages: 390
ISBN-13: 3642390072
DOWNLOAD EBOOKThis book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students interested in partial differential equations and related analysis with applications.
Author: Claude Carasso
Publisher: Springer
Published: 2006-11-15
Total Pages: 356
ISBN-13: 3540478051
DOWNLOAD EBOOKThe field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Author: C. M. Dafermos
Publisher: 清华大学出版社有限公司
Published: 2005
Total Pages: 466
ISBN-13: 9787302102038
DOWNLOAD EBOOKAuthor: Fabio Ancona
Publisher: American Mathematical Soc.
Published: 2004
Total Pages: 186
ISBN-13: 0821834355
DOWNLOAD EBOOKConsiders the Cauchy problem for a strictly hyperbolic $2\times 2$ system of conservation laws in one space dimension $u_t+ F(u)]_x=0, u(0, x)=\bar u(x), $ which is neither linearly degenerate nor genuinely non-linea
Author: Alberto Bressan
Publisher: Springer Science & Business Media
Published: 2011-04-19
Total Pages: 487
ISBN-13: 1441995544
DOWNLOAD EBOOKThis volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.