Data Science Fundamentals for Python and MongoDB

Data Science Fundamentals for Python and MongoDB

Author: David Paper

Publisher: Apress

Published: 2018-05-10

Total Pages: 221

ISBN-13: 1484235975

DOWNLOAD EBOOK

Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn’t required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is “rocky” at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data Who This Book Is For The novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier.


Hands-on Scikit-Learn for Machine Learning Applications

Hands-on Scikit-Learn for Machine Learning Applications

Author: David Paper

Publisher: Apress

Published: 2019-11-16

Total Pages: 247

ISBN-13: 1484253736

DOWNLOAD EBOOK

Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine. All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complex machine learning algorithms. Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python. What You'll LearnWork with simple and complex datasets common to Scikit-Learn Manipulate data into vectors and matrices for algorithmic processing Become familiar with the Anaconda distribution used in data scienceApply machine learning with Classifiers, Regressors, and Dimensionality Reduction Tune algorithms and find the best algorithms for each dataset Load data from and save to CSV, JSON, Numpy, and Pandas formats Who This Book Is For The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.


MongoDB and Python

MongoDB and Python

Author: Niall O'Higgins

Publisher: "O'Reilly Media, Inc."

Published: 2011-09-23

Total Pages: 67

ISBN-13: 1449310370

DOWNLOAD EBOOK

Learn how to leverage MongoDB with your Python applications, using the hands-on recipes in this book. You get complete code samples for tasks such as making fast geo queries for location-based apps, efficiently indexing your user documents for social-graph lookups, and many other scenarios. This guide explains the basics of the document-oriented database and shows you how to set up a Python environment with it. Learn how to read and write to MongoDB, apply idiomatic MongoDB and Python patterns, and use the database with several popular Python web frameworks. You’ll discover how to model your data, write effective queries, and avoid concurrency problems such as race conditions and deadlocks. The recipes will help you: Read, write, count, and sort documents in a MongoDB collection Learn how to use the rich MongoDB query language Maintain data integrity in replicated/distributed MongoDB environments Use embedding to efficiently model your data without joins Code defensively to avoid keyerrors and other bugs Apply atomic operations to update game scores, billing systems, and more with the fast accounting pattern Use MongoDB with the Pylons 1.x, Django, and Pyramid web frameworks


Fundamentals of Data Science

Fundamentals of Data Science

Author: Mr.Desidi Narsimha Reddy

Publisher: Leilani Katie Publication

Published: 2024-09-05

Total Pages: 205

ISBN-13: 9363489698

DOWNLOAD EBOOK

Mr.Desidi Narsimha Reddy, Data Consultant (Data Governance, Data Analytics: Enterprise Performance Management, AI & ML), Soniks consulting LLC, 101 E Park Blvd Suite 600, Plano, TX 75074, United States. Lova Naga Babu Ramisetti, EPM Consultant, Department of Information Technology, MiniSoft Empowering Techonolgy, 10333 Harwin Dr. #375e, Houston, TX 77036, USA. Mr.Harikrishna Pathipati, EPM Manager, Department of Information Technology, ITG Technologies, 10998 S Wilcrest Dr, Houston, TX 77099, USA.


Collecting Lives

Collecting Lives

Author: Elizabeth Rodrigues

Publisher: University of Michigan Press

Published: 2022-05-16

Total Pages: 239

ISBN-13: 0472902636

DOWNLOAD EBOOK

On a near-daily basis, data is being used to narrate our lives. Categorizing algorithms drawn from amassed personal data to assign narrative destinies to individuals at crucial junctures, simultaneously predicting and shaping the paths of our lives. Data is commonly assumed to bring us closer to objectivity, but the narrative paths these algorithms assign seem, more often than not, to replicate biases about who an individual is and could become. While the social effects of such algorithmic logics seem new and newly urgent to consider, Collecting Lives looks to the late nineteenth and early twentieth century U.S. to provide an instructive prehistory to the underlying question of the relationship between data, life, and narrative. Rodrigues contextualizes the application of data collection to human selfhood in order to uncover a modernist aesthetic of data that offers an alternative to the algorithmic logic pervading our sense of data’s revelatory potential. Examining the work of W. E. B. Du Bois, Henry Adams, Gertrude Stein, and Ida B. Wells-Barnett, Rodrigues asks how each of these authors draw from their work in sociology, history, psychology, and journalism to formulate a critical data aesthetic as they attempt to answer questions of identity around race, gender, and nation both in their research and their life writing. These data-driven modernists not only tell different life stories with data, they tell life stories differently because of data.


Business Analytics for Professionals

Business Analytics for Professionals

Author: Alp Ustundag

Publisher: Springer Nature

Published: 2022-05-09

Total Pages: 488

ISBN-13: 3030938239

DOWNLOAD EBOOK

This book explains concepts and techniques for business analytics and demonstrate them on real life applications for managers and practitioners. It illustrates how machine learning and optimization techniques can be used to implement intelligent business automation systems. The book examines business problems concerning supply chain, marketing & CRM, financial, manufacturing and human resources functions and supplies solutions in Python.


Data Science Fundamentals and Practical Approaches

Data Science Fundamentals and Practical Approaches

Author: Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma

Publisher: BPB Publications

Published: 2020-09-03

Total Pages: 580

ISBN-13: 938984567X

DOWNLOAD EBOOK

Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development.


MongoDB Fundamentals

MongoDB Fundamentals

Author: Amit Phaltankar

Publisher: Packt Publishing Ltd

Published: 2020-12-22

Total Pages: 749

ISBN-13: 1839213043

DOWNLOAD EBOOK

Learn how to deploy and monitor databases in the cloud, manipulate documents, visualize data, and build applications running on MongoDB using Node.js Key FeaturesLearn the fundamentals of NoSQL databases with MongoDBCreate, manage, and optimize a MongoDB database in the cloud using AtlasUse a real-world dataset to gain practical experience of handling big dataBook Description MongoDB is one of the most popular database technologies for handling large collections of data. This book will help MongoDB beginners develop the knowledge and skills to create databases and process data efficiently. Unlike other MongoDB books, MongoDB Fundamentals dives into cloud computing from the very start – showing you how to get started with Atlas in the first chapter. You will discover how to modify existing data, add new data into a database, and handle complex queries by creating aggregation pipelines. As you progress, you'll learn about the MongoDB replication architecture and configure a simple cluster. You will also get to grips with user authentication, as well as techniques for backing up and restoring data. Finally, you'll perform data visualization using MongoDB Charts. You will work on realistic projects that are presented as bitesize exercises and activities, allowing you to challenge yourself in an enjoyable and attainable way. Many of these mini-projects are based around a movie database case study, while the last chapter acts as a final project where you will use MongoDB to solve a real-world problem based on a bike-sharing app. By the end of this book, you'll have the skills and confidence to process large volumes of data and tackle your own projects using MongoDB. What you will learnSet up and use MongoDB Atlas on the cloudInsert, update, delete, and retrieve data from MongoDBBuild aggregation pipelines to perform complex queriesOptimize queries using indexesMonitor databases and manage user authorizationImprove scalability and performance with sharding clustersReplicate clusters, back up your database, and restore dataCreate data-driven charts and reports from real-time dataWho this book is for This book is designed for people who are new to MongoDB. It is suitable for developers, database administrators, system administrators, and cloud architects who are looking to use MongoDB for smooth data processing in the cloud. Although not necessary, basic knowledge of a general programming language and experience with other databases will help you grasp the topics covered more easily.


Python Data Science

Python Data Science

Author: Christopher Wilkinson

Publisher:

Published: 2019-10-26

Total Pages: 202

ISBN-13: 9781702806206

DOWNLOAD EBOOK

An Ultimate Guide to Learn Fundamentals of Python Data Science is full of insights and strategies for data scientists, programming professionals, and students who want to equip themselves with the new trending libraries and functions of Python as a data management tool. This book has all the major techniques of data collection, interpretation and processing to achieve refined information. The reader will learn about the scientific research of data, syntax of Python programming language, and all the basic knowledge of imported libraries and methods.An effective approach of Python data science can save time, resources, and energy. You can learn to help any company with the running processes: accounts, HR modules, sales, services and more. Keeping in view the requirements of brand and competition, this guide for beginners covers all the data management strategies and tactics. The development of the well-structured function of Python is purely a systematic and knowledge-based technique. Building a scientific data research system has never been as easy as it is today. A lot of companies have shifted their data systems to the open-source, easy to learn, Python language. If you really want to learn Python Data Science, don't waste your time looking around - buy this extraordinary book now to get started. It is a detailed book with a comprehensive knowledge of data science, Python data structures, standard libraries, data science frameworks and predictive models in Python. Build your success story through learning the best practices of data science. Click the Buy button to get started.


Learn MongoDB 4.x

Learn MongoDB 4.x

Author: Doug Bierer

Publisher: Packt Publishing Ltd

Published: 2020-09-11

Total Pages: 593

ISBN-13: 1789614791

DOWNLOAD EBOOK

Design, administer, and deploy high-volume and fault-tolerant database applications using MongoDB 4.x Key FeaturesBuild a powerful and scalable MongoDB database using real industry dataUnderstand the process of designing NoSQL schema with the latest release of MongoDB 4.xExplore the ins and outs of MongoDB, including queries, replication, sharding, and vital admin tasksBook Description When it comes to managing a high volume of unstructured and non-relational datasets, MongoDB is the defacto database management system (DBMS) for DBAs and data architects. This updated book includes the latest release and covers every feature in MongoDB 4.x, while helping you get hands-on with building a MongoDB database app. You’ll get to grips with MongoDB 4.x concepts such as indexes, database design, data modeling, authentication, and aggregation. As you progress, you’ll cover tasks such as performing routine operations when developing a dynamic database-driven website. Using examples, you’ll learn how to work with queries and regular database operations. The book will not only guide you through design and implementation, but also help you monitor operations to achieve optimal performance and secure your MongoDB database systems. You’ll also be introduced to advanced techniques such as aggregation, map-reduce, complex queries, and generating ad hoc financial reports on the fly. Later, the book shows you how to work with multiple collections as well as embedded arrays and documents, before finally exploring key topics such as replication, sharding, and security using practical examples. By the end of this book, you’ll be well-versed with MongoDB 4.x and be able to perform development and administrative tasks associated with this NoSQL database. What you will learnUnderstand how to configure and install MongoDB 4.xBuild a database-driven website using MongoDB as the backendPerform basic database operations and handle complex MongoDB queriesDevelop a successful MongoDB database design for large corporate customers with complex requirementsSecure MongoDB database systems by establishing role-based access control with X.509 transport-level securityOptimize reads and writes directed to a replica set or sharded clusterPerform essential MongoDB administration tasksMaintain database performance through monitoringWho this book is for This book is a MongoDB tutorial for DevOps engineers, database developers, database administrators, system administrators and those who are just getting started with NoSQL and looking to build document-oriented databases and gain real-world experience in managing databases using MongoDB. Basic knowledge of databases and Python is required to get started with this DBMS book.