Data Science for Fake News

Data Science for Fake News

Author: Deepak P

Publisher: Springer Nature

Published: 2021-04-29

Total Pages: 302

ISBN-13: 3030626962

DOWNLOAD EBOOK

This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.


Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance

Author: Rana, Dipti P.

Publisher: IGI Global

Published: 2021-06-04

Total Pages: 309

ISBN-13: 1799873730

DOWNLOAD EBOOK

Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.


Data Science: From Research to Application

Data Science: From Research to Application

Author: Mahdi Bohlouli

Publisher: Springer Nature

Published: 2020-01-28

Total Pages: 350

ISBN-13: 3030373096

DOWNLOAD EBOOK

This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0. Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017. This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems. Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.


The Psychology of Fake News

The Psychology of Fake News

Author: Rainer Greifeneder

Publisher: Routledge

Published: 2020-08-13

Total Pages: 222

ISBN-13: 1000179052

DOWNLOAD EBOOK

This volume examines the phenomenon of fake news by bringing together leading experts from different fields within psychology and related areas, and explores what has become a prominent feature of public discourse since the first Brexit referendum and the 2016 US election campaign. Dealing with misinformation is important in many areas of daily life, including politics, the marketplace, health communication, journalism, education, and science. In a general climate where facts and misinformation blur, and are intentionally blurred, this book asks what determines whether people accept and share (mis)information, and what can be done to counter misinformation? All three of these aspects need to be understood in the context of online social networks, which have fundamentally changed the way information is produced, consumed, and transmitted. The contributions within this volume summarize the most up-to-date empirical findings, theories, and applications and discuss cutting-edge ideas and future directions of interventions to counter fake news. Also providing guidance on how to handle misinformation in an age of “alternative facts”, this is a fascinating and vital reading for students and academics in psychology, communication, and political science and for professionals including policy makers and journalists.


Detecting Fake News on Social Media

Detecting Fake News on Social Media

Author: Kai Shu

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 121

ISBN-13: 3031019156

DOWNLOAD EBOOK

In the past decade, social media has become increasingly popular for news consumption due to its easy access, fast dissemination, and low cost. However, social media also enables the wide propagation of "fake news," i.e., news with intentionally false information. Fake news on social media can have significant negative societal effects. Therefore, fake news detection on social media has recently become an emerging research area that is attracting tremendous attention. This book, from a data mining perspective, introduces the basic concepts and characteristics of fake news across disciplines, reviews representative fake news detection methods in a principled way, and illustrates challenging issues of fake news detection on social media. In particular, we discussed the value of news content and social context, and important extensions to handle early detection, weakly-supervised detection, and explainable detection. The concepts, algorithms, and methods described in this lecture can help harness the power of social media to build effective and intelligent fake news detection systems. This book is an accessible introduction to the study of detecting fake news on social media. It is an essential reading for students, researchers, and practitioners to understand, manage, and excel in this area. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, datasets, tools used in this book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information: http://dmml.asu.edu/dfn/


Combating Fake News with Computational Intelligence Techniques

Combating Fake News with Computational Intelligence Techniques

Author: Mohamed Lahby

Publisher: Springer Nature

Published: 2021-12-15

Total Pages: 432

ISBN-13: 3030900878

DOWNLOAD EBOOK

This book presents the latest cutting-edge research, theoretical methods, and novel applications in the field of computational intelligence techniques and methods for combating fake news. Fake news is everywhere. Despite the efforts of major social network players such as Facebook and Twitter to fight disinformation, miracle cures and conspiracy theories continue to rain down on the net. Artificial intelligence can be a bulwark against the diversity of fake news on the Internet and social networks. This book discusses new models, practical solutions, and technological advances related to detecting and analyzing fake news based on computational intelligence models and techniques, to help decision-makers, managers, professionals, and researchers design new paradigms considering the unique opportunities associated with computational intelligence techniques. Further, the book helps readers understand computational intelligence techniques combating fake news in a systematic and straightforward way.


Graph Mining

Graph Mining

Author: Deepayan Chakrabarti

Publisher: Morgan & Claypool Publishers

Published: 2012-10-01

Total Pages: 209

ISBN-13: 160845116X

DOWNLOAD EBOOK

What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions


Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Author: Thomas, J. Joshua

Publisher: IGI Global

Published: 2019-11-29

Total Pages: 355

ISBN-13: 1799811948

DOWNLOAD EBOOK

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.


Fake Science

Fake Science

Author: Austin Ruse

Publisher: Simon and Schuster

Published: 2017-07-17

Total Pages: 211

ISBN-13: 1621576140

DOWNLOAD EBOOK

If you listen to any political argument, you're eventually bound to hear something like: "The science is settled on this." Or: "Just look at the statistics!" Or: "There have been studies that say..." You'd think we were living in the golden age of science and reason. But the truth is far more sinister, says Austin Ruse. We're actually living in the age of the low information voter, easily mislead by all-too-convincing false statistics and studies. In Fake Science, Ruse debunks so-called "facts" used to advance political causes one after the other, revealing how poorly they stand up to actual science.


Confluence of AI, Machine, and Deep Learning in Cyber Forensics

Confluence of AI, Machine, and Deep Learning in Cyber Forensics

Author: Misra, Sanjay

Publisher: IGI Global

Published: 2020-12-18

Total Pages: 248

ISBN-13: 1799849015

DOWNLOAD EBOOK

Developing a knowledge model helps to formalize the difficult task of analyzing crime incidents in addition to preserving and presenting the digital evidence for legal processing. The use of data analytics techniques to collect evidence assists forensic investigators in following the standard set of forensic procedures, techniques, and methods used for evidence collection and extraction. Varieties of data sources and information can be uniquely identified, physically isolated from the crime scene, protected, stored, and transmitted for investigation using AI techniques. With such large volumes of forensic data being processed, different deep learning techniques may be employed. Confluence of AI, Machine, and Deep Learning in Cyber Forensics contains cutting-edge research on the latest AI techniques being used to design and build solutions that address prevailing issues in cyber forensics and that will support efficient and effective investigations. This book seeks to understand the value of the deep learning algorithm to handle evidence data as well as the usage of neural networks to analyze investigation data. Other themes that are explored include machine learning algorithms that allow machines to interact with the evidence, deep learning algorithms that can handle evidence acquisition and preservation, and techniques in both fields that allow for the analysis of huge amounts of data collected during a forensic investigation. This book is ideally intended for forensics experts, forensic investigators, cyber forensic practitioners, researchers, academicians, and students interested in cyber forensics, computer science and engineering, information technology, and electronics and communication.