Introduction to Computers and Data Processing
Author: Gary B. Shelly
Publisher: Brooks/Cole
Published: 1980
Total Pages: 516
ISBN-13:
DOWNLOAD EBOOKAlberta Authorized Resource for grade 10-12 ca 1980-1997.
Read and Download eBook Full
Author: Gary B. Shelly
Publisher: Brooks/Cole
Published: 1980
Total Pages: 516
ISBN-13:
DOWNLOAD EBOOKAlberta Authorized Resource for grade 10-12 ca 1980-1997.
Author: Harvey M. Deitel
Publisher: Academic Press
Published: 2014-05-10
Total Pages: 665
ISBN-13: 148326470X
DOWNLOAD EBOOKComputers and Data Processing provides information pertinent to the advances in the computer field. This book covers a variety of topics, including the computer hardware, computer programs or software, and computer applications systems. Organized into five parts encompassing 19 chapters, this book begins with an overview of some of the fundamental computing concepts. This text then explores the evolution of modern computing systems from the earliest mechanical calculating devices to microchips. Other chapters consider how computers present their results and explain the storage and retrieval of massive amounts of computer-accessible information from secondary storage devices. This book discusses as well the development installation, evaluation, and control of computer systems. The final chapter discusses the use of computers in the transportation systems and the ways in which they make possible other innovations in transportation. This book is a valuable resource for computer scientists, systems analysts, computer programmers, mathematicians, and computer specialists.
Author: John Chambers
Publisher: Springer Science & Business Media
Published: 2008-06-14
Total Pages: 515
ISBN-13: 0387759360
DOWNLOAD EBOOKJohn Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.
Author: Röbbe Wünschiers
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 291
ISBN-13: 3642185525
DOWNLOAD EBOOK-Teaches the reader how to use Unix, which is the key to basic computing and allows the most flexibility for bioinformatics applications -Written specifically with the needs of molecular biologists in mind -Easy to follow, written for beginners with no computational knowledge -Includes examples from biological data analysis -Can be use either for self-teaching or in courses
Author: Casey Reas
Publisher: MIT Press
Published: 2014-12-26
Total Pages: 664
ISBN-13: 0262321866
DOWNLOAD EBOOKThe new edition of an introduction to computer programming within the context of the visual arts, using the open-source programming language Processing; thoroughly updated throughout. The visual arts are rapidly changing as media moves into the web, mobile devices, and architecture. When designers and artists learn the basics of writing software, they develop a new form of literacy that enables them to create new media for the present, and to imagine future media that are beyond the capacities of current software tools. This book introduces this new literacy by teaching computer programming within the context of the visual arts. It offers a comprehensive reference and text for Processing (www.processing.org), an open-source programming language that can be used by students, artists, designers, architects, researchers, and anyone who wants to program images, animation, and interactivity. Written by Processing's cofounders, the book offers a definitive reference for students and professionals. Tutorial chapters make up the bulk of the book; advanced professional projects from such domains as animation, performance, and installation are discussed in interviews with their creators. This second edition has been thoroughly updated. It is the first book to offer in-depth coverage of Processing 2.0 and 3.0, and all examples have been updated for the new syntax. Every chapter has been revised, and new chapters introduce new ways to work with data and geometry. New “synthesis” chapters offer discussion and worked examples of such topics as sketching with code, modularity, and algorithms. New interviews have been added that cover a wider range of projects. “Extension” chapters are now offered online so they can be updated to keep pace with technological developments in such fields as computer vision and electronics. Interviews SUE.C, Larry Cuba, Mark Hansen, Lynn Hershman Leeson, Jürg Lehni, LettError, Golan Levin and Zachary Lieberman, Benjamin Maus, Manfred Mohr, Ash Nehru, Josh On, Bob Sabiston, Jennifer Steinkamp, Jared Tarbell, Steph Thirion, Robert Winter
Author: Zhiming Zhao
Publisher: Springer Nature
Published: 2020-07-24
Total Pages: 375
ISBN-13: 3030528294
DOWNLOAD EBOOKThis open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions.
Author: Valentina Janev
Publisher: Springer Nature
Published: 2020-07-15
Total Pages: 212
ISBN-13: 3030531996
DOWNLOAD EBOOKThis open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Published: 2016-12-12
Total Pages: 521
ISBN-13: 1491910364
DOWNLOAD EBOOKLearn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
Published: 2017-09-25
Total Pages: 553
ISBN-13: 1491957611
DOWNLOAD EBOOKGet complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Author: José Unpingco
Publisher: Springer Nature
Published: 2021-05-04
Total Pages: 263
ISBN-13: 3030689522
DOWNLOAD EBOOKThis textbook grew out of notes for the ECE143 Programming for Data Analysis class that the author has been teaching at University of California, San Diego, which is a requirement for both graduate and undergraduate degrees in Machine Learning and Data Science. This book is ideal for readers with some Python programming experience. The book covers key language concepts that must be understood to program effectively, especially for data analysis applications. Certain low-level language features are discussed in detail, especially Python memory management and data structures. Using Python effectively means taking advantage of its vast ecosystem. The book discusses Python package management and how to use third-party modules as well as how to structure your own Python modules. The section on object-oriented programming explains features of the language that facilitate common programming patterns. After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly. The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis. To get the most out of this book, open a Python interpreter and type along with the many code samples.