"This book provides an overall view of recent solutions for mining, and explores new patterns,offering theoretical frameworks and presenting challenges and possible solutions concerning pattern extractions, emphasizing research techniques and real-world applications. It portrays research applications in data models, methodologies for mining patterns, multi-relational and multidimensional pattern mining, fuzzy data mining, data streaming and incremental mining"--Provided by publisher.
"This book provides an overall view of recent solutions for mining, and explores new patterns, offering theoretical frameworks and presenting challenges and possible solutions concerning pattern extractions, emphasizing research techniques and real-world applications. It portrays research applications in data models, methodologies for mining patterns, multi-relational and multidimensional pattern mining, fuzzy data mining, data streaming and incremental mining"--Provided by publisher.
Master the new computational tools to get the most out of your information system. This practical guide, the first to clearly outline the situation for the benefit of engineers and scientists, provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.
Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. Research and Trends in Data Mining Technologies and Applications focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
Presents an overview of the main issues of data mining, including its classification, regression, clustering, and ethical issues. Provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.
Co-location pattern mining detects sets of features frequently located in close proximity to each other. This book focuses on data mining for co-location pattern, a valid method for identifying patterns from all types of data and applying them in business intelligence and analytics. It explains the fundamentals of co-location pattern mining, co-location decision tree, and maximal instance co-location pattern mining along with an in-depth overview of data mining, machine learning, and statistics. This arrangement of chapters helps readers understand the methods of co-location pattern mining step-by-step and their applications in pavement management, image classification, geospatial buffer analysis, etc.
"This book is a collection of knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods and systems for XML data mining that can be used to address key issues and challenges in XML data mining"--Provided by publisher.
The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.