Data Mining for Co-location Patterns

Data Mining for Co-location Patterns

Author: Guoqing Zhou

Publisher: CRC Press

Published: 2022-01-26

Total Pages: 229

ISBN-13: 1000533433

DOWNLOAD EBOOK

Co-location pattern mining detects sets of features frequently located in close proximity to each other. This book focuses on data mining for co-location pattern, a valid method for identifying patterns from all types of data and applying them in business intelligence and analytics. It explains the fundamentals of co-location pattern mining, co-location decision tree, and maximal instance co-location pattern mining along with an in-depth overview of data mining, machine learning, and statistics. This arrangement of chapters helps readers understand the methods of co-location pattern mining step-by-step and their applications in pavement management, image classification, geospatial buffer analysis, etc.


Data Mining the Web

Data Mining the Web

Author: Zdravko Markov

Publisher: John Wiley & Sons

Published: 2007-04-06

Total Pages: 236

ISBN-13: 0470108088

DOWNLOAD EBOOK

This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).


Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases

Author: Wray Buntine

Publisher: Springer Science & Business Media

Published: 2009-09-03

Total Pages: 787

ISBN-13: 3642041736

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.


Preference-based Spatial Co-location Pattern Mining

Preference-based Spatial Co-location Pattern Mining

Author: Lizhen Wang

Publisher: Springer Nature

Published: 2022-01-04

Total Pages: 307

ISBN-13: 981167566X

DOWNLOAD EBOOK

The development of information technology has made it possible to collect large amounts of spatial data on a daily basis. It is of enormous significance when it comes to discovering implicit, non-trivial and potentially valuable information from this spatial data. Spatial co-location patterns reveal the distribution rules of spatial features, which can be valuable for application users. This book provides commercial software developers with proven and effective algorithms for detecting and filtering these implicit patterns, and includes easily implemented pseudocode for all the algorithms. Furthermore, it offers a basis for further research in this promising field. Preference-based co-location pattern mining refers to mining constrained or condensed co-location patterns instead of mining all prevalent co-location patterns. Based on the authors’ recent research, the book highlights techniques for solving a range of problems in this context, including maximal co-location pattern mining, closed co-location pattern mining, top-k co-location pattern mining, non-redundant co-location pattern mining, dominant co-location pattern mining, high utility co-location pattern mining, user-preferred co-location pattern mining, and similarity measures between spatial co-location patterns. Presenting a systematic, mathematical study of preference-based spatial co-location pattern mining, this book can be used both as a textbook for those new to the topic and as a reference resource for experienced professionals.


Fuzzy Systems and Data Mining VIII

Fuzzy Systems and Data Mining VIII

Author: A.J. Tallón-Ballesteros

Publisher: IOS Press

Published: 2022-11-04

Total Pages: 440

ISBN-13: 1643683470

DOWNLOAD EBOOK

Fuzzy logic is vital to applications in the electrical, industrial, chemical and engineering realms, as well as in areas of management and environmental issues. Data mining is indispensible in dealing with big data, massive data, and scalable, parallel and distributed algorithms. This book presents papers from FSDM 2022, the 8th International Conference on Fuzzy Systems and Data Mining. The conference, originally scheduled to take place in Xiamen, China, was held fully online from 4 to 7 November 2022, due to ongoing restrictions connected with the COVID-19 pandemic. This year, FSDM received 196 submissions, of which 47 papers were ultimately selected for presentation and publication after a thorough review process, taking into account novelty, and the breadth and depth of research themes falling under the scope of FSDM. This resulted in an acceptance rate of 23.97%. Topics covered include fuzzy theory, algorithms and systems, fuzzy applications, data mining and the interdisciplinary field of fuzzy logic and data mining. Offering an overview of current research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.


Proceedings of the Fourth SIAM International Conference on Data Mining

Proceedings of the Fourth SIAM International Conference on Data Mining

Author: Michael W. Berry

Publisher: SIAM

Published: 2004-01-01

Total Pages: 556

ISBN-13: 9780898715682

DOWNLOAD EBOOK

The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.


Encyclopedia of GIS

Encyclopedia of GIS

Author: Shashi Shekhar

Publisher: Springer Science & Business Media

Published: 2007-12-12

Total Pages: 1392

ISBN-13: 038730858X

DOWNLOAD EBOOK

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.


Fuzzy Systems and Data Mining VII

Fuzzy Systems and Data Mining VII

Author: C. Shen

Publisher: IOS Press

Published: 2021-11-04

Total Pages: 494

ISBN-13: 1643682156

DOWNLOAD EBOOK

Fuzzy systems and data mining are indispensible aspects of the computer systems and algorithms on which the world has come to depend. This book presents papers from FSDM 2021, the 7th International Conference on Fuzzy Systems and Data Mining. The conference, originally due to take place in Seoul, South Korea, was held online on 26-29 October 2021, due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This year, the committee received 266 submissions, and this book contains 52 papers, including keynotes and invited presentations, oral and poster contributions. The papers cover four main areas: 1) fuzzy theory, algorithms and systems – including topics like stability; 2) fuzzy applications – which are widely used and cover various types of processing as well as hardware and architecture for big data and time series; 3) the interdisciplinary field of fuzzy logic and data mining; and 4) data mining itself. The topic most frequently addressed this year is fuzzy systems. The book offers an overview of research and developments in fuzzy logic and data mining, and will be of interest to all those working in the field of data science.


Fuzzy Systems and Data Mining V

Fuzzy Systems and Data Mining V

Author: A.J. Tallón-Ballesteros

Publisher: IOS Press

Published: 2019-11-06

Total Pages: 1186

ISBN-13: 1643680196

DOWNLOAD EBOOK

The Fuzzy Systems and Data Mining (FSDM) conference is an annual event encompassing four main themes: fuzzy theory, algorithms and systems, which includes topics like stability, foundations and control; fuzzy application, which covers different kinds of processing as well as hardware and architectures for big data and time series and has wide applicability; the interdisciplinary field of fuzzy logic and data mining, encompassing applications in electrical, industrial, chemical and engineering fields as well as management and environmental issues; and data mining, outlining new approaches to big data, massive data, scalable, parallel and distributed algorithms. The annual conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This book includes the papers accepted and presented at the 5th International Conference on Fuzzy Systems and Data Mining (FSDM 2019), held in Kitakyushu, Japan on 18-21 October 2019. This year, FSDM received 442 submissions. All papers were carefully reviewed by program committee members, taking account of the quality, novelty, soundness, breadth and depth of the research topics falling within the scope of FSDM. The committee finally decided to accept 137 papers, which represents an acceptance rate of about 30%. The papers presented here are arranged in two sections: Fuzzy Sets and Data Mining, and Communications and Networks. Providing an overview of the most recent scientific and technological advances in the fields of fuzzy systems and data mining, the book will be of interest to all those working in these fields.


Fuzzy Systems and Data Mining VI

Fuzzy Systems and Data Mining VI

Author: A.J. Tallón-Ballesteros

Publisher: IOS Press

Published: 2020-11-13

Total Pages: 812

ISBN-13: 1643681354

DOWNLOAD EBOOK

The interdisciplinary field of fuzzy logic encompass applications in the electrical, industrial, chemical and engineering realms as well as in areas of management and environmental issues, while data mining covers new approaches to big data, massive data, and scalable, parallel and distributed algorithms. This book presents papers from the 6th International Conference on Fuzzy Systems and Data Mining (FSDM 2020). The conference was originally due to be held from 13-16 November 2020 in Xiamen, China, but was changed to an online conference held on the same dates due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers academics and delegates from industry. This year, the committee received 316 submissions, of which 76 papers were selected for inclusion in the conference; an acceptance rate of 24%. The conference covers four main areas: fuzzy theory; algorithms and systems, which includes topics like stability; foundations and control; and fuzzy applications, which are widely used and cover various types of processing as well as hardware and architecture for big data and time series. Providing a current overview of research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.