The 8th International Database Workshop, organized by the Hong Kong Computer Society and held in Hong Kong in July 1997, dedicated its theme to Data Mining, Data Warehouse and Client/Server Databases with separate focuses on the Academic and the Industrial Streams. It brought together database practitioners, researchers and vendors to share and explore their methodologies and experiences of advance database systems. These proceedings contain 22 of the selected papers received for the section on the Industrial Stream, written by database vendors and consultants from 14 countries around the world. It will serve as a useful and practical technology reference book on the latest findings in the field.
The 8th International Database Workshop, organized by the Hong Kong Computer Society and held in Hong Kong in July 1997, dedicated its theme to Data Mining, Data Warehouse and Client/Server Databases with separate focuses on the Academic and the Industrial Streams. It brought together database practitioners, researchers and vendors to share and explore their methodologies and experiences of advance database systems. . These proceedings contain 21 of the selected papers received for the section on the Academic Stream, written by database practitioners and researchers from 13 countries around the world. It will serve as a useful and practical technology reference book on the latest findings in the field.
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms. The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers. It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science. The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.
There is now so much data on the Web that managing it with conventional tools is becoming almost impossible. To manage this data, provide interoperability and warehousing between multiple data sources and systems, and extract information from the databases and warehouses, various tools are being developed. In fact, developments in multimedia databa
The explosion of Web-based data has created a demand among executives and technologists for methods to identify, gather, analyze, and utilize data that may be of value to corporations and organizations. The emergence of data mining, and the larger field of Web mining, has businesses lost within a confusing maze of mechanisms and strategies for obta
Focusing on three applications of data mining, Design and Implementation of Data Mining Tools explains how to create and employ systems and tools for intrusion detection, Web page surfing prediction, and image classification. Mainly based on the authors' own research work, the book takes a practical approach to the subject.The first part of the boo
Analyzing and Securing Social Networks focuses on the two major technologies that have been developed for online social networks (OSNs): (i) data mining technologies for analyzing these networks and extracting useful information such as location, demographics, and sentiments of the participants of the network, and (ii) security and privacy technolo
Focusing on a data-centric perspective, this book provides a complete overview of data mining: its uses, methods, current technologies, commercial products, and future challenges. Three parts divide Data Mining: Part I describes technologies for data mining - database systems, warehousing, machine learning, visualization, decision sup