This book constitutes the refereed proceedings of the 6th International Conference on Data Management in Grid and Peer-to-Peer Systems, Globe 2013, held in Prague, Czech Republic, in August 2013 in conjunction with DEXA 2013. The 10 revised full papers presented were carefully reviewed and selected from 19 submissions. The papers are organized in the following topical sections: data partitioning and consistency; RDF data publishing, querying linked data, and applications; and distributed storage systems and virtualization.
This book constitutes the refereed proceedings of the 5th International Conference on Data Management in Grid and Peer-to-Peer Systems, Globe 2012, held in Vienna, Austria, in September 2012 in conjunction with DEXA 2012. The 9 revised full papers presented were carefully reviewed and selected from 15 submissions. The papers are organized in topical sections on data management in the cloud, cloud MapReduce and performance evaluation, and data stream systems and distributed data mining.
This book presents the latest research findings, innovative research results, methods and development techniques related to P2P, grid, cloud and Internet computing from both theoretical and practical perspectives. It also reveals the synergies among such large-scale computing paradigms. P2P, grid, cloud and Internet computing technologies have rapidly become established as breakthrough paradigms for solving complex problems by enabling aggregation and sharing of an increasing variety of distributed computational resources at large scale. Grid computing originated as a paradigm for high-performance computing, as an alternative to expensive supercomputers through different forms of large-scale distributed computing. P2P computing emerged as a new paradigm after client–server and web-based computing and has proved useful in the development of social networking, B2B (business to business), B2C (business to consumer), B2G (business to government), and B2E (business to employee). Cloud computing has been defined as a “computing paradigm where the boundaries of computing are determined by economic rationale rather than technical limits,” and it has fast become a computing paradigm with applicability and adoption in all application domains and which provides utility computing at a large scale. Lastly, Internet computing is the basis of any large-scale distributed computing paradigms; it has developed into a vast area of flourishing fields with enormous impact on today’s information societies, and serving as a universal platform comprising a large variety of computing forms such as grid, P2P, cloud and mobile computing.
This book constitutes the proceedings of the Third International Conference on Data Management in Grid and Peer-to-Peer Systems, held in Bilbao, Spain, in September 2010.
Covers a comprehensive range of P2P and Grid technologies. Provides a broad overview of the P2P field and how it relates to other technologies, such as Grid Computing, jini, Agent based computing, and web services.
This two volume set LNCS 9261 and LNCS 9262 constitutes the refereed proceedings of the 26th International Conference on Database and Expert Systems Applications, DEXA 2015, held in Valencia, Spain, September 1-4, 2015. The 40 revised full papers presented together with 32 short papers, and 2 keynote talks, were carefully reviewed and selected from 125 submissions. The papers discuss a range of topics including: temporal, spatial and high dimensional databases; semantic Web and ontologies; modeling, linked open data; NoSQLm NewSQL, data integration; uncertain data and inconsistency tolerance; database system architecture; data mining, query processing and optimization; indexing and decision support systems; modeling, extraction, social networks; knowledge management and consistency; mobility, privacy and security; data streams, Web services; distributed, parallel and cloud databases; information retrieval; XML and semi-structured data; data partitioning, indexing; data mining, applications; WWW and databases; data management algorithms. These volumes also include accepted papers of the 8th International Conference on Data Management in Cloud, Grid and P2P Systems, Globe 2015, held in Valencia, Spain, September 2, 2015. The 8 full papers presented were carefully reviewed and selected from 13 submissions. The papers discuss a range of topics including: MapReduce framework: load balancing, optimization and classification; security, data privacy and consistency; query rewriting and streaming.
The distributed setting of RDF stores in the cloud poses many challenges, including how to optimize data placement on the compute nodes to improve query performance. In this book, a novel benchmarking methodology is developed for data placement strategies; one that overcomes these limitations by using a data-placement-strategy-independent distributed RDF store to analyze the effect of the data placement strategies on query performance. Frequently used data placement strategies have been evaluated, and this evaluation challenges the commonly held belief that data placement strategies which emphasize local computation lead to faster query executions. Indeed, results indicate that queries with a high workload can be executed faster on hash-based data placement strategies than on, for example, minimal edge-cut covers. The analysis of additional measurements indicates that vertical parallelization (i.e., a well-distributed workload) may be more important than horizontal containment (i.e., minimal data transport) for efficient query processing. Two such data placement strategies are proposed: the first, found in the literature, is entitled overpartitioned minimal edge-cut cover, and the second is the newly developed molecule hash cover. Evaluation revealed a balanced query workload and a high horizontal containment, which lead to a high vertical parallelization. As a result, these strategies demonstrated better query performance than other frequently used data placement strategies. The book also tests the hypothesis that collocating small connected triple sets on the same compute node while balancing the amount of triples stored on the different compute nodes leads to a high vertical parallelization.
This book covers the latest advances in Big Data technologies and provides the readers with a comprehensive review of the state-of-the-art in Big Data processing, analysis, analytics, and other related topics. It presents new models, algorithms, software solutions and methodologies, covering the full data cycle, from data gathering to their visualization and interaction, and includes a set of case studies and best practices. New research issues, challenges and opportunities shaping the future agenda in the field of Big Data are also identified and presented throughout the book, which is intended for researchers, scholars, advanced students, software developers and practitioners working at the forefront in their field.
This book constitutes the refereed proceedings of the 22 International Conference on Database and Expert Systems Applications, DEXA 2011, held in Toulouse, France, August 29 - September 2, 2011. The 52 revised full papers and 40 short papers presented were carefully reviewed and selected from 207 submissions. The papers are organized in topical sections on query processing; database semantics; skyline queries; security and privacy; spatial and temporal data; semantic web search; storage and search; web search; data integration, transactions and optimization; and web applications.
How can the Web be made situation-aware? Event processing is a suitable technology for gaining the necessary real-time results. The Web, however, has many users and many application domains. Thus, we developed multi-schema friendly data models allowing the re-use and mix from diverse users and application domains. Furthermore, our methods describe protocols to exchange events on the Web, algorithms to execute the language and to calculate access rights.