Classification, Data Analysis, and Knowledge Organization

Classification, Data Analysis, and Knowledge Organization

Author: Hans-Hermann Bock

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 404

ISBN-13: 3642763073

DOWNLOAD EBOOK

In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.


Data Analysis, Data Modeling, and Classification

Data Analysis, Data Modeling, and Classification

Author: Martin E. Modell

Publisher: McGraw-Hill Companies

Published: 1992

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

From a widely published, international expert in both the theory and practical applications of the entity-relationship approach, this reference takes the reader from data entity analysis at the enterprise level through data element analysis and physical design considerations.


Model-Based Clustering and Classification for Data Science

Model-Based Clustering and Classification for Data Science

Author: Charles Bouveyron

Publisher: Cambridge University Press

Published: 2019-07-25

Total Pages: 447

ISBN-13: 1108640591

DOWNLOAD EBOOK

Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.


Machine Learning Models and Algorithms for Big Data Classification

Machine Learning Models and Algorithms for Big Data Classification

Author: Shan Suthaharan

Publisher: Springer

Published: 2015-10-20

Total Pages: 364

ISBN-13: 1489976418

DOWNLOAD EBOOK

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.


The Analysis of Cross-Classified Categorical Data

The Analysis of Cross-Classified Categorical Data

Author: Stephen E. Fienberg

Publisher: Springer Science & Business Media

Published: 2007-08-06

Total Pages: 208

ISBN-13: 0387728252

DOWNLOAD EBOOK

A variety of biological and social science data come in the form of cross-classified tables of counts, commonly referred to as contingency tables. Until recent years the statistical and computational techniques available for the analysis of cross-classified data were quite limited. This book presents some of the recent work on the statistical analysis of cross-classified data using longlinear models, especially in the multidimensional situation.


Classification and Data Analysis

Classification and Data Analysis

Author: Krzysztof Jajuga

Publisher: Springer Nature

Published: 2020-08-28

Total Pages: 334

ISBN-13: 3030523489

DOWNLOAD EBOOK

This volume gathers peer-reviewed contributions on data analysis, classification and related areas presented at the 28th Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, SKAD 2019, held in Szczecin, Poland, on September 18–20, 2019. Providing a balance between theoretical and methodological contributions and empirical papers, it covers a broad variety of topics, ranging from multivariate data analysis, classification and regression, symbolic (and other) data analysis, visualization, data mining, and computer methods to composite measures, and numerous applications of data analysis methods in economics, finance and other social sciences. The book is intended for a wide audience, including researchers at universities and research institutions, graduate and doctoral students, practitioners, data scientists and employees in public statistical institutions.


Data Analysis, Machine Learning and Applications

Data Analysis, Machine Learning and Applications

Author: Christine Preisach

Publisher: Springer Science & Business Media

Published: 2008-04-13

Total Pages: 714

ISBN-13: 354078246X

DOWNLOAD EBOOK

Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.


Classification, Clustering, and Data Analysis

Classification, Clustering, and Data Analysis

Author: Krzystof Jajuga

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 468

ISBN-13: 3642561810

DOWNLOAD EBOOK

The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.


A Professional's Guide to Systems Analysis

A Professional's Guide to Systems Analysis

Author: Martin E. Modell

Publisher: McGraw-Hill Companies

Published: 1996

Total Pages: 504

ISBN-13:

DOWNLOAD EBOOK

This book became a bestseller because it showed system analysts how to solve problems in the real-world workplace. Now it has been extensively updated to address the changes created by distributing computing, microbased systems, reengineering, and other factors affecting systems analysis today. New case studies, illustrations, and examples reflect the latest business environments.


Data Analysis and Classification for Bioinformatics

Data Analysis and Classification for Bioinformatics

Author: Arun Jagota

Publisher:

Published: 2000

Total Pages: 98

ISBN-13:

DOWNLOAD EBOOK

Probability theory. Probability distributions. Tests of statistical significance. Information theory. Clustering methods. Probability models. The supervised classification problem. Probabilistic classifers. Neural networks. Decision trees. Nearest neighbor classifers.