Current Trends in Symmetric Polynomials with their Applications

Current Trends in Symmetric Polynomials with their Applications

Author: Taekyun Kim

Publisher: MDPI

Published: 2019-10-15

Total Pages: 238

ISBN-13: 3039216201

DOWNLOAD EBOOK

This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.


Current Trends in Symmetric Polynomials with Their Applications Ⅱ

Current Trends in Symmetric Polynomials with Their Applications Ⅱ

Author: Taekyun Kim

Publisher: MDPI

Published: 2021-03-19

Total Pages: 206

ISBN-13: 3036503609

DOWNLOAD EBOOK

The special issue contains research papers with various topics in many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theory, methods, and their application based on current and recent developing symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and contains the most recent advances made in the area of symmetric functions and polynomials.


Orthogonal Polynomials: Current Trends and Applications

Orthogonal Polynomials: Current Trends and Applications

Author: Francisco Marcellán

Publisher: Springer Nature

Published: 2021

Total Pages: 327

ISBN-13: 3030561909

DOWNLOAD EBOOK

The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganés, Spain, from July 3 to July 6, 2018. These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields. In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.


Decomposability of Tensors

Decomposability of Tensors

Author: Luca Chiantini

Publisher: MDPI

Published: 2019-02-15

Total Pages: 161

ISBN-13: 3038975907

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Decomposability of Tensors" that was published in Mathematics


Polynomials

Polynomials

Author: Cheon Seoung Ryoo

Publisher: BoD – Books on Demand

Published: 2019-05-02

Total Pages: 174

ISBN-13: 183880269X

DOWNLOAD EBOOK

Polynomials are well known for their ability to improve their properties and for their applicability in the interdisciplinary fields of engineering and science. Many problems arising in engineering and physics are mathematically constructed by differential equations. Most of these problems can only be solved using special polynomials. Special polynomials and orthonormal polynomials provide a new way to analyze solutions of various equations often encountered in engineering and physical problems. In particular, special polynomials play a fundamental and important role in mathematics and applied mathematics. Until now, research on polynomials has been done in mathematics and applied mathematics only. This book is based on recent results in all areas related to polynomials. Divided into sections on theory and application, this book provides an overview of the current research in the field of polynomials. Topics include cyclotomic and Littlewood polynomials; Descartes' rule of signs; obtaining explicit formulas and identities for polynomials defined by generating functions; polynomials with symmetric zeros; numerical investigation on the structure of the zeros of the q-tangent polynomials; investigation and synthesis of robust polynomials in uncertainty on the basis of the root locus theory; pricing basket options by polynomial approximations; and orthogonal expansion in time domain method for solving Maxwell's equations using paralleling-in-order scheme.


Current Trends in Matrix Theory

Current Trends in Matrix Theory

Author: Frank Uhlig

Publisher: North Holland

Published: 1987

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK

This volume contains 41 original papers and 22 abstracts of research in linear algebra and applications currently conducted by many of the leading experts in the field. More than a dozen of the papers are survey articles, while several propose open problems. The applications range from control to probability theory, with strong emphasis on matrix polynomials, Schur complements, permanents, numerical computation, combinatorics, and core linear algebra.


Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications

Author: Jean-Bernard Lasserre

Publisher: World Scientific

Published: 2010

Total Pages: 384

ISBN-13: 1848164467

DOWNLOAD EBOOK

1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources


Current Trends on Monomial and Binomial Ideals

Current Trends on Monomial and Binomial Ideals

Author: Huy Tài Hà

Publisher: MDPI

Published: 2020-03-18

Total Pages: 140

ISBN-13: 303928360X

DOWNLOAD EBOOK

Historically, the study of monomial ideals became fashionable after the pioneering work by Richard Stanley in 1975 on the upper bound conjecture for spheres. On the other hand, since the early 1990s, under the strong influence of Gröbner bases, binomial ideals became gradually fashionable in commutative algebra. The last ten years have seen a surge of research work in the study of monomial and binomial ideals. Remarkable developments in, for example, finite free resolutions, syzygies, Hilbert functions, toric rings, as well as cohomological invariants of ordinary powers, and symbolic powers of monomial and binomial ideals, have been brought forward. The theory of monomial and binomial ideals has many benefits from combinatorics and Göbner bases. Simultaneously, monomial and binomial ideals have created new and exciting aspects of combinatorics and Göbner bases. In the present Special Issue, particular attention was paid to monomial and binomial ideals arising from combinatorial objects including finite graphs, simplicial complexes, lattice polytopes, and finite partially ordered sets, because there is a rich and intimate relationship between algebraic properties and invariants of these classes of ideals and the combinatorial structures of their combinatorial counterparts. This volume gives a brief summary of recent achievements in this area of research. It will stimulate further research that encourages breakthroughs in the theory of monomial and binomial ideals. This volume provides graduate students with fundamental materials in this research area. Furthermore, it will help researchers find exciting activities and avenues for further exploration of monomial and binomial ideals. The editors express our thanks to the contributors to the Special Issue. Funds for APC (article processing charge) were partially supported by JSPS (Japan Society for the Promotion of Science) Grants-in-Aid for Scientific Research (S) entitled "The Birth of Modern Trends on Commutative Algebra and Convex Polytopes with Statistical and Computational Strategies" (JP 26220701). The publication of this volume is one of the main activities of the grant.


Symmetric and Asymmetric Distributions

Symmetric and Asymmetric Distributions

Author: Emilio Gómez Déniz

Publisher: MDPI

Published: 2021-01-21

Total Pages: 146

ISBN-13: 3039366467

DOWNLOAD EBOOK

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.