This volume of trends in optical amplifiers and their applications includes such topics as: progess in optical fibre amplifiers; reliability of high-power pump lasers for erbium-doped fibre amplifiers; and inP-based optical switch array using semiconductor optical amplifiers.
With the advent of wavelength routing and dynamic, reconfigurable optical networks, new demands are being made in the design and operation of optical amplifiers. This book provides, for the first time, a comprehensive review of optical amplifier technology in the context of these recent advances in the field. It demonstrates how to manage the trade-offs between amplifier design, network architecture and system management and operation. The book provides an overview of optical amplifiers and reconfigurable networks before examining in greater detail the issues of importance to network operators and equipment manufacturers, including 40G and 100G transmission. Optical amplifier design is fully considered, focusing on fundamentals, design solutions and amplifier performance limitations. Finally, the book discusses other emerging applications for optical amplifiers such as optical networks for high data rate systems, free space systems, long single span links and optical digital networks. This book will be of great value to R&D engineers, network and systems engineers, telecommunications service providers, component suppliers, industry analysts, network operators, postgraduate students, academics and anyone seeking to understand emerging trends in optical networks and the consequent changes in optical amplifier design, features and applications. Provides an in depth and focused review of the new reconfigurable network architecture and its impact on optical amplifiers Addresses 40G and 100G transmission and networking Written by experts in the field with deep technical knowledge and practical experience of commercial practice and concerns
The invention of the laser was one of the towering achievements of the twentieth century. At the opening of the twenty-first century we are witnessing the burgeoning of the myriad technical innovations to which that invention has led. The Handbook of Laser Technology and Applications is a practical and long-lasting reference source for scientists and engineers who work with lasers. The Handbook provides, a comprehensive guide to the current status of lasers and laser systems; it is accessible to science or engineering graduates needing no more than standard undergraduate knowledge of optics. Whilst being a self-contained reference work, the Handbook provides extensive references to contemporary work, and is a basis for studying the professional journal literature on the subject. It covers applications through detailed case studies, and is therefore well suited to readers who wish to use it to solve specific problems of their own. The first of the three volumes comprises an introduction to the basic scientific principles of lasers, laser beams and non-linear optics. The second volume describes the mechanisms and operating characteristics of specific types of laser including crystalline solid - state lasers, semiconductor diode lasers, fibre lasers, gas lasers, chemical lasers, dye lasers and many others as well as detailing the optical and electronic components which tailor the laser's performance and beam delivery systems. The third volume is devoted to case studies of applications in a wide range of subjects including materials processing, optical measurement techniques, medicine, telecommunications, data storage, spectroscopy, earth sciences and astronomy, and plasma fusion research. This vast compendium of knowledge on laser science and technology is the work of over 130 international experts, many of whom are recognised as the world leaders in their respective fields. Whether the reader is engaged in the science, technology, industrial or medical applications of lasers or is researching the subject as a manager or investor in technical enterprises they cannot fail to be informed and enlightened by the wide range of information the Handbook supplies.
The invention of the laser was one of the towering achievements of the twentieth century. At the opening of the twenty-first century we are witnessing the burgeoning of the myriad technical innovations to which that invention has led. The Handbook of Laser Technology and Applications is a practical and long-lasting reference source for scientists a
This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.
This book summarizes the proceedings of the invited talks presented at the International Symposium on New Trends in Optical Soliton Transmission Systems held in Kyoto during November 18 - 21, 1997. As a result of worldwide demand for ultra high bitrate transmissions and increased scientific interest from the soliton community, research on optical solitons in fibres has made remarkable progress in recent years. In view of these trends, the Research Group for Optical Soliton Communications (ROSC), chaired by Akira Hasegawa, was established in Japan in April 1995 to promote collaboration and information exchange among communication service companies, industries and academic circles in the theory and application of optical solitons. This symposium was organized as a part of the ROSC activities. As with the 1 st ROSC symposium, this symposium attracted enthusiastic response from worldwide researchers involved in the subject of soliton based communications and intensive discussions were held throughout the symposium. Particular emphases were made to dispersion managements of soliton transmission. I would like to note that in the }'t symposium the (adiabatic) dispersion managements just began to appear in reducing radiation at amplifiers and reducing collision effects in WDM system. These have become standard this time, but in addition new, non-adiabatic dispersion managements have been introduced independently by various scientists all over the world.
• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.
Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries.