Current Problems in Particle Physics and Cosmology covers the proceedings of the workshop ""Current Problems in Particle Physics and Cosmology"", held in Ioannina, Greece on June 25-29, 1990. The book focuses on the reactions, problems, methodologies, and processes involved in particle physics and cosmology. The selection first offers information on the search for cosmic axions and experimental limits on light scalars/pseudoscalars and experimental tests of the standard model using the recently collected UA2 data. Topics include limits on the production of light scalar and pseudoscalar particles; measurement of SM parameters; transverse momenta distributions of the W and Z bosons; and mass spectroscopy with jets. The text then takes a look at heavy top quark, fermion mixings, and electroweak multi-particle-production at TeV energies. Discussions focus on third and second generation masses and mixing; neutrino sector; threshold energy; total inelastic multiparticle cross sections; and geometrical flavor interactions at very high energies. The publication examines supersymmetry breaking and dynamical determination of superstring parameters; four-dimensional strings and low energy predictions; and gravity from superstrings. The selection is a vital source of data for readers interested in particle physics and cosmology.
This book aims to give the non-specialist reader a general overview of what physicists think they do and do not know in some representative frontier areas of contemporary physics. It focuses on the fundamental problems at the heart of the subject, and emphasizes the provisional nature of our present understanding of things.
At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focuses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess.
This readable introduction to particle physics and cosmology discusses the interaction of these two fundamental branches of physics and considers recent advances beyond the standard models. Eight chapters comprise a brief introduction to the gauge theories of the strong and the electroweak interactions, the so-called grand unified theories, and general relativity. Ten more chapters address recent concepts such as composite fermions and bosons, supersymmetry, quantum gravity, supergravity, and strings theories, and relate them to modern cosmology and experimental astronomy.
This current updated and expanded text reflects the large number of scientific advances, both theoretically and experimentally, within the discipline of cosmoparticle physics in the last 10 years. Some of the topics that have been added, updated include but are not limited to; HND or CMD+HND scenarios being implemented into sterile neutrino scenarios, the ramifications of extending the forms of dark matter with respect to our view of neutrinos, the origin of baryon matter and the need for non-baryonic matter in current theories, problems the existence of dark matters raises with respect to cosmoparticle physics and the relationship with (meta) stable (super) weakly interacting particles predicted by the extension of the standard model, restrictions on baryon and lepton photons, as well as problems associated with cosmological expansion just to name a few. These and many other topics are readdressed in light of recent both experimental and theoretical developments. Other areas of that will be of interest to the reader include the puzzles presented by direct and indirect effects of dark matter (e.g, results of experiments such as DAMA/NaI, DAMA/LIBRA and PAMELA) may lead to nontrivial new solutions for the problem of its nature, like the existence of new stable families of quarks and leptons and composite dark matter scenario. The present work will be of interest to any researcher interested in this fascinating field dealing with fundamental interactions of the micro- and macroworld.
The NATO Advanced Study Institute 2000 was held in Cascais, a small town located in a renowned beach resort area, near Lisbon. The aim of the Meeting was to provide an overview and to cover the recent devel opments in some of the most important topics in Particle Physics and Cosmology, including Neutrino Physics, CP violation, B-Physics, Baryo genesis, Dark Matter, Inflation, Supersymmetry, Unified Theories, Large Extra-Di~ensions and M-theory. In the NATO ASI 2000, we had the priv ilege to have among the lecturers, some of the most prominent physicists working in the fields of Particle Physics and Cosmology. Furthermore, there was a strong participation by a large number of young scientists, including graduate students and post-docs who had an opportunity to learn about the latest developments in the field and discuss the various topics with lec turers and other participants. The enthusiasm of the young participants, the generosity of the lecturers in giving their time to participate in open discussions and debates, together with the social events and the pleasant environment of Cascais, all contributed to the great success of the Meeting. We are very grateful to Camara Municipal de Cascais for their support and organization of the reception in the beautiful Palace Condes Castro de Guimaraes and we are also specially grateful to colonel Eugenio de Oliveira for his support, to commander A. Monteiro de Macedo and to Mr.
Many of the world's leading players in cosmology look at the strengths and weaknesses of the current big bang model in explaining certain puzzling data. A comprehensive coverage of the expanding field of cosmology, this text will be valuable for graduate students and researchers in cosmology and theoretical astrophysics.
The Duality of Time Theory is the result of more than two decades of ceaseless investigation and searching through ancient manuscripts of concealed philosophies and mystical traditions, comparing all that with the fundamental results of modern physics and cosmology, until all the contradicting jigsaw pieces were put together into this brilliant portrait. Without the overwhelming proofs and strong confirmations that accumulated over time, it would have been impossible to pursue this long research path, as it was extremely challenging to appreciate the unfathomable secret of time and the consequences of the ongoing perpetual creation of space, that result from the Single Monad Model of the Cosmos. The complex-time geometry of the Duality of Time Theory explains how the physical dimensions of space are sequentially being re-created in the inner levels of time, which makes the outward time genuinely imaginary with respect to the inner real levels. This is easily expressed in terms of the hyperbolic split-complex numbers, that characterize the Relativistic Lorentzian Symmetry. This will have deep implications because space-time has become naturally quantized in a way that explains and unites all the three principles of Relativity, leading to full Quantum Field Theory of Gravity, as well as explaining all the other fundamental interactions in terms of the new granular space-time geometry. This ultimate unification will solve many persisting problems in physics and cosmology. The homogeneity problem, for example, will instantly cease, since the Universe, no matter how large it could be, is re-created sequentially in the inner time, so all the states are updated and synchronized before they appear in the outer level that we encounter. Furthermore, the Duality of Time does not only unify all the fundamental interactions in terms of its genuinely-complex time-time geometry, but it unifies this whole physical world with the two other even more fundamental domains of the psychical and spiritual worlds. All these three conclusive and complementary realms are constructed on the same concept of space-time geometry that together form one single absolute and perfectly symmetrical space. This particular subject is treated at length in the Third Volume of this book series - the Ultimate Symmetry, which explores how the apparent physical and metaphysical multiplicity is emerging from the absolute Oneness of Divine Presence, descending through four fundamental levels of symmetry: ultimate, hyper, super and normal. Among many other astonishing consequences, this astounding conclusion means that the psychical world is composed of atoms and molecules that are identical with the physical world except that they are evolving in orthogonal time direction. It may appear initially impossible to believe how the incorporeal worlds may have the same atomic structure as the physical world, but it is more appropriate to say that physical structures are eventually incorporeal, because they become various wave phenomena and energy interactions as soon as we dive into their microscopic level, as it is now confirmed by Quantum Field Theories. In the Duality of Time Theory, since rigid space is created sequentially in the inner time, energy may become negative, imaginary and even multidimensional, which simply means that all things in creation are various kinds of energy moments that are spreading on different intersecting dimensions of time; so not only mass and energy are equivalent, but also charge and all other physical and metaphysical entities are interconvertible types of energy, including consciousness and information.
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
What are the current ideas describing the large-scale structure of the Universe? How do they relate to the observed facts? This book looks at both the strengths and weaknesses of the current big-bang model in explaining certain puzzling data. It arises from an international conference that brought together many of the world's leading players in cosmology. In addition to presenting individual talks, the proceedings of the resulting discussions are also recorded. Giving a comprehensive coverage of the expanding field of cosmology, this text will be valuable for graduate students and researchers in cosmology and theoretical astrophysics.