Black holes exist in galactic nuclei and in some X-ray binaries found in our own galaxy and the large Magellanic Cloud. This volume focuses on astrophysical high-energy emission processes around black holes, and the development of theoretical frameworks for interesting observational results.
Black holes exist in galactic nuclei and in some X-ray binaries found in our own galaxy and the large Magellanic Cloud. This volume focuses on astrophysical high-energy emission processes around black holes, and the development of theoretical frameworks for interesting observational results. Contents: Black Hole Observations; Accretion Disk/Formation of Jets; Energy Extraction from Rotating Black Holes; Supernova and Gamma Ray Bursts; Black Hole Astrophysics. Readership: Graduate students, post-docs and academics in astrophysics, astronomy, cosmology and high energy physics.
This book consists of about 20 lectures on theoretical and observational aspects of astrophysical black holes, by experts in the field. The basic principles and astrophysical applications of the black hole magnetosphere and the Blandford-Znajek process are reviewed in detail, as well as accretion by black holes, black hole X-Ray binaries, black holes with cosmic strings, and so on. Recent advances in X-Ray observations of galactic black holes and new understanding of supermassive black holes in AGNs and normal galaxies are also discussed.
Black holes are among the most mysterious objects that the human mind has been capable of imagining. As pure mathematical constructions, they are tools for exploiting the fundamental laws of physics. As astronomical sources, they are part of our cosmic landscape, warping space-time, coupled to the large-scale properties and life cycle of their host
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling.This Tenth Marcel Grossmann Meeting was organized by an international committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg and backed by an international coordinating committee of about 135 members from scientific institutions representing 54 countries. The scientific program included 29 morning plenary talks during 6 days, and 57 parallel sessions over five afternoons, during which roughly 500 papers were presented.These three volumes of the proceedings of MG10 give a broad view of all aspects of gravitation, from mathematical issues to recent observations and experiments.
The major theme of this KIAS Workshop encompasses astroparticle physics, astro-hadron physics, and relativistic astrophysics. The Workshop focused on highly explosive phenomena in astrophysical systems explored from a wide-ranging vista, such as supernova explosions, gamma-ray bursts, astrophysical jets, and neutron star and black hole systems which are believed to be the main origin of these explosive phenomena.