Crystals, Defects and Microstructures

Crystals, Defects and Microstructures

Author: Rob Phillips

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 810

ISBN-13: 9780521793575

DOWNLOAD EBOOK

Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.


Crystals, Defects and Microstructures

Crystals, Defects and Microstructures

Author: Rob Phillips

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 807

ISBN-13: 0521790050

DOWNLOAD EBOOK

Examines the advances made in the field in recent years and looks at the various methods now used; ideal for graduate students and researchers.


Handbook of Materials Structures, Properties, Processing and Performance

Handbook of Materials Structures, Properties, Processing and Performance

Author: Lawrence E. Murr

Publisher: Springer

Published: 2021-01-14

Total Pages: 1500

ISBN-13: 9783319019055

DOWNLOAD EBOOK

This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.


Nanodiamond

Nanodiamond

Author: Oliver A Williams

Publisher: Royal Society of Chemistry

Published: 2014-03-18

Total Pages: 553

ISBN-13: 1849737614

DOWNLOAD EBOOK

The exceptional mechanical, optical, surface and biocompatibility properties of nanodiamond have gained it much interest. Exhibiting the outstanding bulk properties of diamond at the nanoscale in the form of a film or small particle makes it an inexpensive alternative for many applications. Nanodiamond is the first comprehensive book on the subject. The book reviews the state of the art of nanodiamond films and particles covering the fundamentals of growth, purification and spectroscopy and some of its diverse applications such as MEMS, drug delivery and biomarkers and biosensing. Specific chapters include the theory of nanodiamond, diamond nucleation, low temperature growth, diamond nanowires, electrochemistry of nanodiamond, nanodiamond flexible implants, and cell labelling with nanodiamond particles. Edited by a leading expert in nanodiamonds, this is the perfect resource for those new to, and active in, nanodiamond research and those interested in its applications.


Imperfections in Crystalline Solids

Imperfections in Crystalline Solids

Author: Wei Cai

Publisher: Cambridge University Press

Published: 2016-09-15

Total Pages: 535

ISBN-13: 1316571718

DOWNLOAD EBOOK

This textbook provides students with a complete working knowledge of the properties of imperfections in crystalline solids. Readers will learn how to apply the fundamental principles of mechanics and thermodynamics to defect properties in materials science, gaining all the knowledge and tools needed to put this into practice in their own research. Beginning with an introduction to defects and a brief review of basic elasticity theory and statistical thermodynamics, the authors go on to guide the reader in a step-by-step way through point, line, and planar defects, with an emphasis on their structural, thermodynamic, and kinetic properties. Numerous end-of-chapter exercises enable students to put their knowledge into practice, and with solutions for instructors and MATLABĀ® programs available online, this is an essential text for advanced undergraduate and introductory graduate courses in crystal defects, as well as being ideal for self-study.


Crystals, Defects and Microstructures

Crystals, Defects and Microstructures

Author: Rob Phillips

Publisher:

Published: 2001

Total Pages:

ISBN-13: 9780511176241

DOWNLOAD EBOOK

Annotation. A central tenet of materials analysis is the structure-property paradigm, which proposes a direct connection between the geometric structures within a material and its properties. The increasing power of high-speed computation has had a major impact on theoretical materials science and has permitted the systematic examination of this connection between structure and properties. In this textbook, Rob Phillips examines various methods for studying crystals, defects, and microstructures, techniques that have made such computations possible. He also presents recent efforts to treat problems involving either multiple spatial or temporal scales simultaneously. Detailed case studies illustrate general principles as well as their applications to current research problems.


Handbook of Laser Micro- and Nano-Engineering

Handbook of Laser Micro- and Nano-Engineering

Author: KOJI SUGIOKA.

Publisher:

Published: 2019

Total Pages:

ISBN-13: 9783319695372

DOWNLOAD EBOOK

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.


Defect and Microstructure Analysis by Diffraction

Defect and Microstructure Analysis by Diffraction

Author: Robert L. Snyder

Publisher: International Union of Crystal

Published: 1999

Total Pages: 785

ISBN-13: 9780198501893

DOWNLOAD EBOOK

Defect and Microstructure Analysis by Diffraction is focused on extracting information on the real structure of materials from their diffraction patterns. The primary features of a powder diffraction pattern are determined by the "idealized" periodic nature of the crystal structure. With theadvent of computer automation the techniques for carrying out qualitative, quantitative and structure analysis based on the primary pattern features rapidly matured. In general, the deviations of a particular specimen, from the ideal or perfect crystal structure, cause diffraction peak profiles tobroaden and sometimes to become asymmetric. Thus, information on the real structure or microstructure of a specimen can be obtained from a careful study of the diffraction line profiles. The evolving techniques for microstructure analysis from diffraction patterns such as micro-strain, crystallitesize, macro-strain and preferred orientation analysis require an ever more detailed understanding of the effects of crystallographic mistakes on peak assymmetry and the effect of the distribution of small crystallites on the tails of diffraction peaks. This book provides a comprehensive analysis ofthe fundamental theory and techniques for microstructure analysis from diffraction patterns and summarizes the current state of the art. This complete survey lays the foundation for the next and last major development in this field: the extraction of the full information in a powder pattern by thesimulation of the full experimental pattern. The goal of this branch of science is to extract all of the information locked in the powder diffraction pattern including: the types and densities of stacking faults, the strain field produced by each, the anisotropic crystallite size and orientation,along with the size and strain distributions of each phase in a specimen. This book provides a complete summary of the developments of the twentieth century and points the way.


A Practical Guide to Rock Microstructure

A Practical Guide to Rock Microstructure

Author: Ron H. Vernon

Publisher: Cambridge University Press

Published: 2004-10-07

Total Pages: 610

ISBN-13: 9780521891332

DOWNLOAD EBOOK

Rock microstructures provide clues for the interpretation of rock history. A good understanding of the physical or structural relationships of minerals and rocks is essential for making the most of more detailed chemical and isotopic analyses of minerals. Ron Vernon discusses the basic processes responsible for the wide variety of microstructures in igneous, sedimentary, metamorphic and deformed rocks, using high-quality colour illustrations. He discusses potential complications of interpretation, emphasizing pitfalls, and focussing on the latest techniques and approaches. Opaque minerals (sulphides and oxides) are referred to where appropriate. The comprehensive list of relevant references will be useful for advanced students wishing to delve more deeply into problems of rock microstructure. Senior undergraduate and graduate students of mineralogy, petrology and structural geology will find this book essential reading, and it will also be of interest to students of materials science.


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.