Crystallography and Crystal Chemistry of Materials with Layered Structures

Crystallography and Crystal Chemistry of Materials with Layered Structures

Author: F.A. Lévy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 9401014337

DOWNLOAD EBOOK

In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.


Structural Chemistry of Layer-Type Phases

Structural Chemistry of Layer-Type Phases

Author: F. Hulliger

Publisher: Springer Science & Business Media

Published: 1976

Total Pages: 410

ISBN-13: 9789027707147

DOWNLOAD EBOOK

This monograph is intended to give the reader an appreciation of the wealth of phases, elements and inorganic compounds, which crystallize in layer-type or two dimensional structures. Originally this work was planned as a short review article but the large number of phases made it grow out to the size of a book. As is evident from the arrangement of the chapters our point of view was gradually transmuting from geometric to chemical. Moreover, the decision about the compounds that should be discussed was taken only during the course of the work, as is partly evident from the sequence of the references. For chemical or geometrical reason we have included also certain layered chain and molecular structures as well as some layered structures whose layers are linked by hydrogen bonds, thus are in fact three-dimensional. Instead of writing only a review with pseudo-scientific interpretations that later turn out to be wrong anyway we thought it more profitable to include the crystallographic data which are scattered in various original articles and hand books but never in one single volume. We have transcribed many of the data in order to make them correspond with the standard settings of the International Tables for X-Ray Crystallography. The figures are consistent with the data given in the tables. We apologize for errors and hope that their number is at a reasonably low level in spite of the time pressure.


Preparation and Crystal Growth of Materials with Layered Structures

Preparation and Crystal Growth of Materials with Layered Structures

Author: R.M.A. Lieth

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 285

ISBN-13: 9401727503

DOWNLOAD EBOOK

The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.


Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds

Author: L.J. de Jongh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 9400918607

DOWNLOAD EBOOK

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.


Neutron Scattering in Layered Copper-Oxide Superconductors

Neutron Scattering in Layered Copper-Oxide Superconductors

Author: Albert Furrer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 416

ISBN-13: 9401512841

DOWNLOAD EBOOK

The phenomenon of superconductivity - after its discovery in metals such as mercury, lead, zinc, etc. by Kamerlingh-Onnes in 19]] - has attracted many scientists. Superconductivity was described in a very satisfactory manner by the model proposed by Bardeen, Cooper and Schrieffer, and by the extensions proposed by Abrikosov, Gorkov and Eliashberg. Relations were established between superconductivity and the fundamental properties of solids, resulting in a possible upper limit of the critical temperature at about 23 K. The breakthrough that revolutionized the field was made in 1986 by Bednorz and Muller with the discovery of high-temperature superconductivity in layered copper-oxide perovskites. Today the record in transition temperature is 133 K for a Hg based cuprate system. The last decade has not only seen a revolution in the size of the critical temperature, but also in the myriads of research groups that entered the field. In addition, high-temperature superconductivity became a real interdisciplinary topic and brought together physicists, chemists and materials scientists who started to investigate the new compounds with almost all the available experimental techniques and theoretical methods. As a consequence we have witnessed an avalanche of publications which has never occurred in any field of science so far and which makes it difficult for the individual to be thoroughly informed about the relevant results and trends. Neutron scattering has outstanding properties in the elucidation of the basic properties of high-temperature superconductors.


Physics and Chemistry of Metal Cluster Compounds

Physics and Chemistry of Metal Cluster Compounds

Author: L.J. de Jongh

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 326

ISBN-13: 9401512949

DOWNLOAD EBOOK

On Friday, February 20, 1980, I had the pleasure to be present at the inaugural lecture of my colleague Jan Reedijk, who had just been named at the Chair of Inorganic Chemistry of Leiden University. According to tradition, the ceremony took place in the impressive Hall of the old University Academy Building. In the course of his lecture, Jan mentioned a number of recent developments in chemistry which had struck him as particularly important or interesting. Among those was the synthesis of large metal cluster compounds, and, to my luck, he showed a slide ofthe molecular structure of [PtI9(C)b]4-. (To my luck, since at traditional Leiden University it is quite unusual to show slides at such ceremonies.) This constituted my first acquaintance with this exciting new class of materials. I became immediately fascinated by this molecule, partly because of the esthetic beauty of its fivefold symmetry, partly because as a physicist it struck me that it could be visualized as an "embryonically small" metal particle, embedded in a shell of CO ligands.


Carbyne and Carbynoid Structures

Carbyne and Carbynoid Structures

Author: R.B. Heimann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 450

ISBN-13: 9401147426

DOWNLOAD EBOOK

This is a book on one of the most fascinating and controversial areas in contemporary science of carbon, chemistry, and materials science. It concisely summarizes the state of the art in topical and critical reviews written by professionals in this and related fields.


Electron Spectroscopies Applied to Low-Dimensional Structures

Electron Spectroscopies Applied to Low-Dimensional Structures

Author: H.P. Hughes

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 513

ISBN-13: 0306471264

DOWNLOAD EBOOK

The effect of reduced dimensionality, inherent at the crystallographic level, on the electronic properties of low dimensional materials can be dramatic, leading to structural and electronic instabilities—including supercond- tivity at high temperatures, charge density waves, and localisation—which continue to attract widespread interest. The layered transition metal dichalcogenides have engaged attention for many years, partly arising from the charge density wave effects which some show and the controlled way in which their properties can be modified by intercalation, while the development of epitaxial growth techniques has opened up promising areas based on dichalcogenide heterostructures and quantum wells. The discovery of high-temperature superconducting oxides, and the realisation that polymeric materials too can be exploited in a controlled way for various opto-electronic applications, have further sti- lated interest in the effects of structural dimensionality. It seems timely therefore to draw together some strands of recent research involving a range of disparate materials which share some common char- teristics of low dimensionality. This resulting volume is aimed at researchers with specialist interests in the particular materials discussed but who may also wish to examine the related phenomena observed in different systems, and at a more general solid state audience with broad interests in electronic properties and low dimensional phenomena. Space limitations have required us to be selective as regards particular materials, though we have managed to include those as dissimilar as polymeric semiconductors, superconducting oxides, bronzes and layered chalcogenides.


Structure of Materials

Structure of Materials

Author: Marc De Graef

Publisher: Cambridge University Press

Published: 2012-10-08

Total Pages: 773

ISBN-13: 1139560476

DOWNLOAD EBOOK

This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.


Two-Dimensional Electron Systems

Two-Dimensional Electron Systems

Author: E.Y. Andrei

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 398

ISBN-13: 9401512868

DOWNLOAD EBOOK

Recent studies on two-dimensional systems have led to new insights into the fascinating interplay between physical properties and dimensionality. Many of these ideas have emerged from work on electrons bound to the surface of a weakly polarizable substrate such as liquid helium or solid hydrogen. The research on this subject continues to be at the forefront of modern condensed matter physics because of its fundamental simplicity as well as its connection to technologically useful devices. This book is the first comprehensive overview of experimental and theoretical research in this exciting field. It is intended to provide a coherent introduction for graduate students and non-experts, while at the same time serving as a reference source for active researchers in the field. The chapters are written by individuals who made significant contributions and cover a variety of specialized topics. These include the origin of the surface states, tunneling and magneto-tunneling out of these states, the phase diagram, collective excitations, transport and magneto-transport.