Single Crystals of Electronic Materials

Single Crystals of Electronic Materials

Author: Roberto Fornari

Publisher: Woodhead Publishing Limited

Published: 2018-09

Total Pages: 400

ISBN-13: 9780081020968

DOWNLOAD EBOOK

Single Crystals of Electronic Materials: Growth and Properties is a complete overview of the state of the art growth of bulk semiconductors. It is not only a valuable update of the body of information on crystal growth of well-established electronic materials such as silicon, III-V, II-VI and IV-VI semiconductors, but includes chapters on novel semiconductors including wide bandgap oxides (ZnO Ga2O3, In2O3, Al2O3), nitrides (AIN and GaN) and diamond. Each chapter focuses in-depth on a material, providing a comprehensive overview including: Applications and requirements of the electronic material Thermodynamic properties and definition of usable growth methods Schematics of growth methods for the material Description of up-to-date growth technologies and processes Tailoring of crystal properties via growth parameters Benefits of computer modelling Doping issues and reduction of defect density State-of-the art of the material New trends and future developments


Handbook of Crystal Growth

Handbook of Crystal Growth

Author: Tom Kuech

Publisher: Elsevier

Published: 2014-11-02

Total Pages: 1384

ISBN-13: 0444633057

DOWNLOAD EBOOK

Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques - Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth - Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology - Describes atomic level epitaxial deposition and other low temperature growth techniques - Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials - Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials


Crystal Growth Technology

Crystal Growth Technology

Author: Hans J. Scheel

Publisher: John Wiley & Sons

Published: 2009-07-31

Total Pages: 695

ISBN-13: 0470491108

DOWNLOAD EBOOK

This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: * General aspects of crystal growth technology * Silicon * Compound semiconductors * Oxides and halides * Crystal machining * Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.


Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials

Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials

Author: Peter Capper

Publisher: John Wiley & Sons

Published: 2005-10-31

Total Pages: 574

ISBN-13: 0470012072

DOWNLOAD EBOOK

A valuable, timely book for the crystal growth community, edited by one of the most respected members in the field. Contents cover all the important materials from silicon through the III-V and II-IV compounds to oxides, nitrides, fluorides, carbides and diamonds International group of contributors from academia and industry provide a balanced treatment Includes global interest with particular relevance to: USA, Canada, UK, France, Germany, Netherlands, Belgium, Italy, Spain, Switzerland, Japan, Korea, Taiwan, China, Australia and South Africa


Crystal Growth for Beginners

Crystal Growth for Beginners

Author: Ivan V. Markov

Publisher: World Scientific

Published: 2003

Total Pages: 566

ISBN-13: 9812382453

DOWNLOAD EBOOK

This is the first-ever textbook on the fundamentals of nucleation, crystal growth and epitaxy. It has been written from a unified point of view and is thus a non-eclectic presentation of this interdisciplinary topic in materials science. The reader is required to possess some basic knowledge of mathematics and physics. All formulae and equations are accompanied by examples that are of technological importance. The book presents not only the fundamentals but also the state of the art in the subject. The second revised edition includes two separate chapters dealing with the effect of the Enrich-Schwoebel barrier for down-step diffusion, as well as the effect of surface active species, on the morphology of the growing surfaces. In addition, many other chapters are updated accordingly. Thus, it serves as a valuable reference book for both graduate students and researchers in materials science.


Technology of Gallium Nitride Crystal Growth

Technology of Gallium Nitride Crystal Growth

Author: Dirk Ehrentraut

Publisher: Springer Science & Business Media

Published: 2010-06-14

Total Pages: 337

ISBN-13: 3642048307

DOWNLOAD EBOOK

This book discusses the important technological aspects of the growth of GaN single crystals by HVPE, MOCVD, ammonothermal and flux methods for the purpose of free-standing GaN wafer production.


Fundamentals of Crystal Growth I

Fundamentals of Crystal Growth I

Author: Franz E. Rosenberger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 544

ISBN-13: 3642812759

DOWNLOAD EBOOK

The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.


Crystal Growth Technology

Crystal Growth Technology

Author: K. Byrappa

Publisher: Springer Science & Business Media

Published: 2003-04-17

Total Pages: 618

ISBN-13: 9783540003670

DOWNLOAD EBOOK

Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.