Carbonate Microfabrics

Carbonate Microfabrics

Author: Richard Rezak

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 309

ISBN-13: 146849421X

DOWNLOAD EBOOK

Carbonate Microfabrics is the first attempt to bring together in one reference the application of microfabric analysis to the solution of problems in the fields of geology, geophysics and geotechnique. This book, the result of a symposium and workshop on carbonate microfabrics, explores the relationship of microfabrics to fundamental properties and processes in carbonates. Carbonate Microfabrics will be of particular interest to geologists and is intended to be of general interest to researchers in such related fields as geochemistry, geophysics, and geotechnique.


Crystallization and Materials Science of Modern Artificial and Natural Crystals

Crystallization and Materials Science of Modern Artificial and Natural Crystals

Author: Elena Borisenko

Publisher: BoD – Books on Demand

Published: 2012-01-20

Total Pages: 346

ISBN-13: 9533076089

DOWNLOAD EBOOK

Crystal growth is an important process, which forms the basis for a wide variety of natural phenomena and engineering developments. This book provides a unique opportunity for a reader to gain knowledge about various aspects of crystal growth from advanced inorganic materials to inorganic/organic composites, it unravels some problems of molecular crystallizations and shows advances in growth of pharmaceutical crystals, it tells about biomineralization of mollusks and cryoprotection of living cells, it gives a chance to learn about statistics of chiral asymmetry in crystal structure.


Handbook of Crystal Growth

Handbook of Crystal Growth

Author: Peter Rudolph

Publisher: Elsevier

Published: 2014-11-04

Total Pages: 1420

ISBN-13: 0444633065

DOWNLOAD EBOOK

Vol 2A: Basic TechnologiesHandbook of Crystal Growth, Second Edition Volume IIA (Basic Technologies) presents basic growth technologies and modern crystal cutting methods. Particularly, the methodical fundamentals and development of technology in the field of bulk crystallization on both industrial and research scales are explored. After an introductory chapter on the formation of minerals, ruling historically the basic crystal formation parameters, advanced basic technologies from melt, solution, and vapour being applied for research and production of the today most important materials, like silicon, semiconductor compounds and oxides are presented in detail. The interdisciplinary and general importance of crystal growth for human live are illustrated.Vol 2B: Growth Mechanisms and DynamicsHandbook of Crystal Growth, Second Edition Volume IIB (Growth Mechanisms and Dynamics) deals with characteristic mechanisms and dynamics accompanying each bulk crystal growth method discussed in Volume IIA. Before the atoms or molecules pass over from a position in the fluid medium (gas, melt or solution) to their place in the crystalline face they must be transported in the fluid over macroscopic distances by diffusion, buoyancy-driven convection, surface-tension-driven convection, and forced convection (rotation, acceleration, vibration, magnetic mixing). Further, the heat of fusion and the part carried by the species on their way to the crystal by conductive and convective transport must be dissipated in the solid phase by well-organized thermal conduction and radiation to maintain a stable propagating interface. Additionally, segregation and capillary phenomena play a decisional role for chemical composition and crystal shaping, respectively. Today, the increase of high-quality crystal yield, its size enlargement and reproducibility are imperative conditions to match the strong economy.Volume 2A - Presents the status and future of Czochralski and float zone growth of dislocation-free silicon - Examines directional solidification of silicon ingots for photovoltaics, vertical gradient freeze of GaAs, CdTe for HF electronics and IR imaging as well as antiferromagnetic compounds and super alloys for turbine blades - Focuses on growth of dielectric and conducting oxide crystals for lasers and non-linear optics - Topics on hydrothermal, flux and vapour phase growth of III-nitrides, silicon carbide and diamond are explored Volume 2B - Explores capillarity control of the crystal shape at the growth from the melt - Highlights modeling of heat and mass transport dynamics - Discusses control of convective melt processes by magnetic fields and vibration measures - Includes imperative information on the segregation phenomenon and validation of compositional homogeneity - Examines crystal defect generation mechanisms and their controllability - Illustrates proper automation modes for ensuring constant crystal growth process - Exhibits fundamentals of solution growth, gel growth of protein crystals, growth of superconductor materials and mass crystallization for food and pharmaceutical industries


Mechanisms and Phylogeny of Mineralization in Biological Systems

Mechanisms and Phylogeny of Mineralization in Biological Systems

Author: Shoichi Suga

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 461

ISBN-13: 4431681329

DOWNLOAD EBOOK

Various kinds of mineralization have been found in many biological systems. Investigations made at a microscopical level using various sophisticated analytical methods and using principles developed in different fields have clarified their mechanisms very much. Sometimes, very similar phenomena have been found in the mineralized tissues of completely different biological systems. Compilation and comparative investigations of such findings obtained from the many specimens systematically collected contribute a great deal to an understanding of the crucial mechanisms and significance of biominerali zation which originated in very primitive organisms and remain in advanced ones. Previously, the functional significance of mineralized tissues was considered mainly from an anatomical point of view based upon their morphological and structural features. However, the recent advance of investigations has made it possible to interpret the func tional significance of biomineralization not only from local and mechanical points of view, but also from a systemic and phylogenetic point of view. It is also well-known that biomineralization has contributed in various ways to geological and oceanographical conditions of the environment in which the organisms were living. During this process, the mechanisms of biomineralization may have evolved to maintain harmony between organisms and their environments.


New Perspectives on Mineral Nucleation and Growth

New Perspectives on Mineral Nucleation and Growth

Author: Alexander E.S. Van Driessche

Publisher: Springer

Published: 2017-01-04

Total Pages: 0

ISBN-13: 9783319456676

DOWNLOAD EBOOK

In the last decade, numerous studies have demonstrated the existence of alternative pathways to nucleation and crystallisation that oppose the classical view. Such proposed scenarios include multistage reactions proceeding via various precursor species and/or intermediate phases. The aim of this book is to review and discuss these recent advances in our understanding of the early stages of mineralisation through a series of contributions that address both experimental and theoretical studies about the formation and nature of initial precursor species (e.g., prenucleation clusters, dense liquid phases, amorphous nanoparticles, etc.) as well as their transformations leading to the stable mineral phase. Several chapters are devoted to cutting-edge analytical techniques used for investigating the above processes in situ, in real time and at conditions relevant to both natural and industrial processes. At the end of the book, the editors summarize the key questions that still need to be addressed in order to establish a complete picture of the nucleation and growth processes involved during the formation of minerals