Cryomodule Development for the CEBAF Upgrade

Cryomodule Development for the CEBAF Upgrade

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long term plans for CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of these plans, an Upgrade Cryomodule capable of providing more than three times the voltage of the original CEBAF cryomodule specification within the same length is under development. Development activities have been focused on critical areas thought to have maximum impact on the overall design. These have included the cavity structure, rf power coupling, cavity suspension, alignment, cavity tuning, and beamline interface. It has been found that all design and development areas are tightly coupled and can not be developed independently. Substantial progress has been made toward an integrated design for the Jefferson Lab Upgraded Cryomodule.


Development of a Cryomodule for the CEBAF Upgrade

Development of a Cryomodule for the CEBAF Upgrade

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long-term plans for the CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of those plans, an Upgrade Cryomodule, capable of providing more than three times the voltage of the original CEBAF cryomodule specification within the same length, is under development. In particular, this requires the development of superconducting cavities capable of consistently operating at gradients above 12 MV/m and Q(approximately)101°, new frequency tuners with excellent resolution, and cavity control systems.


CEBAF Upgrade Cryomodule Component Testing in the Horizontal Test Bed (HTB).

CEBAF Upgrade Cryomodule Component Testing in the Horizontal Test Bed (HTB).

Author:

Publisher:

Published: 2001

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell, 1.5 GHz cavities with integral helium vessel, a new, backlash-free cavity tuner, the waveguide coupler with its room-temperature ceramic window, and the HOM damping filters. In order to test the design features and performance of the new components, a horizontal cryostat (Horizontal Test Bed) has been constructed which allows testing with a turn around time of less than three weeks. This cryostat provides the environment for testing one or two cavities, with associated auxiliary components, in a condition similar to that of a real cryomodule. A series of tests has been performed on a prototype 7-cell cavity and the above-mentioned systems. In this paper the results of the tests on the cryostat, on the cavity performance, on its coupler, on the tuner characteristics, and on the microphonics behavior will be reported.


Superconducting Cavity Development for the CEBAF Upgrade

Superconducting Cavity Development for the CEBAF Upgrade

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long-term plans for CEBAF at Jefferson Lab call for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of these plans, an Upgrade Cryomodule, capable of providing more than twice the operating voltage of the existing CEBAF modules within the same length, is being developed. In particular, this requires the development of superconducting cavities capable of consistently operating at gradients above 12 MV/m and Q (approximately) 101°. We have engaged in a complete review of all the processes and procedures involved in the fabrication and assembly of cavities, and are modifying our chemical processing, cleaning, and assembly facilities. While we have retained the cell shape of existing CEBAF cavities, the new superconducting structure will be substantially different in several respects, such as the higher-order-modes damping and the fundamental power coupling systems. Design features and experimental results will be presented.


CEBAF Upgrade

CEBAF Upgrade

Author:

Publisher:

Published: 2014

Total Pages: 8

ISBN-13:

DOWNLOAD EBOOK

The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.


Frequency Tuning of the CEBAF Upgrade Cavities

Frequency Tuning of the CEBAF Upgrade Cavities

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Long-term plans for CEBAF at Jefferson Lab calls for achieving 12 GeV in the middle of the next decade and 24 GeV after 2010. In support of these plans, an Upgrade Cryomodule capable of providing more than twice the voltage of the existing ones is under development. One requirement is to operate the superconducting cavities, which are 40% longer than existing ones, at 2.5 times the original design gradient with the same amount of rf power. This puts stringent requirements on the accuracy of the frequency tuner: range of 400 kHz and resolution of 1 Hz. A new tuner design to meet these requirements is under development. This system avoids problem areas of previous designs by holding to the principles of not placing moving parts in the vacuum and/or low temperature space, and of having all drive components readily accessible for maintenance and replacement without cryomodule warm-up.


Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

Commissioning and Operational Experience With an Intermediate Upgrade Cryomodule for the CEBAF 12 GeV Upgrade

Author: G. Davis

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Three cryomodules have been designed and built as intermediate prototypes for the CEBAF 12 GeV upgrade. This paper will discuss the commissioning and operational experience with the second of these cryomodules, which was installed and commissioned in the Jefferson Lab 10 kW Free Electron Laser Facility. Within the cryomodule are eight 7-cell, 1497 MHz cavities. It was designed to accelerate 1 mA of beam in excess of 70 MV and to have the same footprint as a standard CEBAF cryomodule. The cryomodule was installed in parallel with the FEL beam line in the spring of 2004 and characterized simultaneous with beam delivery. It was installed in the beam line in the early summer of 2004 and has since been operated as part of an energy recovered linac with 5 mA of beam current and 75 MV accelerating gradient for extended periods of time. Additionally, it was operated at 1 mA of beam current and 80 MV of accelerating gradient for several hours without a trip. In the latter operating mode the beam current was limited by the injector setup.


Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465?A.


Improved Prototype Cryomodule for the CEBAF 12 GeV Upgrade

Improved Prototype Cryomodule for the CEBAF 12 GeV Upgrade

Author:

Publisher:

Published: 2003

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In order to provide a higher performance building block cryomodule for the CEBAF 12 GeV upgrade, modifications have been made to the design of the Upgrade Cryomodule. The prototype cryomodule will be completed in 2004 and be installed for operation in CEBAF. Design changes enable the use of higher gradient cavities to achieve greater than 100 MV per cryomodule while not exceeding the budgeted cryogenic load of 300 W during steady-state operation.


Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

Author:

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.