The development of cryogenic devices for particle detection has reached a stage at which many interesting applications are conceivable and already have been demonstrated. The book provides a comprehensive review of the field of cryogenic particle detection. It introduces the different detection techniques and gives an overview of the important areas in which these detectors are successfully applied.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
Superconductors today constitute a major focus of activity in the development of high resolution detectors for many applications. This volume collects the papers of an international workshop on the basic theoretical and experimental issues involved in the interaction between particles and superconductors. It emphasizes the involved condensed matter aspects of non-equilibrium time-dependent Ginzburg-Landau equations, metastable superconductivity, quasiparticle and phonon lifetimes, and quasiparticle trapping, as well as low-noise pulse electronics, detector fabrication and low background cryogenics.
As demonstrated by the contributions in this volume, the domain of superconducting and low-temperature devices is in a rapidly expanding phase. Interactions between materials sciences, low-temperature physics, astrophysics, nuclear and particle physics have provided the incentive for new experiments, which could ultimately record such rare interactions as double beta decay, neutrino scattering, or collisions of the elusive dark matter halo particles. The theoretical and experimental improvements achieved during the last year have been impressive. Detection of 60 keV resolution with a non-zero spin material as a target seems therefore realizable in the near future. Similarly, impressive achievements on ballistic phonons detection and superheated superconducting detectors have been presented, together with reliable techniques for developing ultra low noise electronics required by these ambitious experiments. Apart from the contributions presented during the symposium, the two original papers by Niinikoski proposing the use of bolometers as particle detectors have been included in this volume. These papers, despite their current interest, have never been published before. The comprehensive style of the papers will appeal to specialists and non-specialists alike, in particular solid-state physicists will find the volume of considerable interest, as the field of materials research continues to benefit from the type of work presented here.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contribute to biomedical industry. This is a truly interdisciplinary field and convergence technology where the communication between different disciplines is the most challenging issue for the success of the great works. One of the first steps to promote the communications in this convergence technology would be teaching the basics of these different fields to the researchers in a plain language with the help of Convergence of Terahertz Science in Biomedical Systems which is considered to be 3-4th year college students or beginning level of graduate students. Therefore, this type of book can be used by many people who want to enter or understand this field. Even more it can be used for teaching in universities or research institutions.
Terahertz radiation - also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz - consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahertz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm. Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. The book presents information about Terahertz science, Terahertz photodetectors and Terahertz Lasers. A special emphasis is given to room temperature operation of long wavelength photodetectors based on novel quantum dots. Moreover, a complete analysis of systems based on Quantum Cascade structures to detect far infrared wavelengths is provided. Finally, the book presents Terahertz laser principles considering multi-color lasers in this range of wavelengths. It is written as a background for graduate students in the Optics field.