Cryocoolers 12

Cryocoolers 12

Author: Ronald G. Jr. Ross

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 799

ISBN-13: 0306479192

DOWNLOAD EBOOK

The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. One class of pulse tubes that has reached maturity is referred to as “Stirling type” because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide cooling in the 30 to 100 K temperature range and operate at frequencies from 30 to 60 Hz. The other type of pulse tube cooler making great advances is the so-called “Gifford-McMahon type. ” Pulse tube coolers of this type use a G-M type compressor and lower frequency operation to achieve temperatures in the 2 to 10 K temperature range. Nearly a third of this proceedings covers these new developments in the pulse tube arena. Complementing the work on low-temperature pulse tubes is substantial continued progress on rare earth regenerator materials and Gifford-McMahon coolers. These technologies continue to make great progress in opening up the 2 - 4 K market. Also in the commercial sector, continued interest is being shown in the development of long-life, low-cost cryocoolers for the emerging high temperature superconductor electronics market, particularly the cellular telephone base-station market. At higher temperature levels, closed-cycle J-T or throttle-cycle refrigerators are taking advantage of mixed refrigerant gases to achieve low-cost cryocooler systems in the 65 to 80 K temperature range.


Cryocoolers 13

Cryocoolers 13

Author: Ronald G. Ross

Publisher: Springer Science & Business Media

Published: 2007-02-15

Total Pages: 710

ISBN-13: 0387275339

DOWNLOAD EBOOK

The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. New this year are papers de scribing the development of very large pulse tube cryocoolers to provide up to 1500 watts of cooling for industrial applications such as cooling the superconducting magnets of Mag-lev trains, coolmg superconducting cables for the power mdustry, and liquefymg natural gas. Pulse tube coolers can be driven by several competing compressor technologies. One class of pulse tube coolers is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide coolmg m the 30 to 100 K temperature range and operate ^t frequencies from 30 to 60 Hz. A second type of pulse tube cooler is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation (~1 Hz) to achieve temperatures in the 2 to 10 K temperature range. The third type of pulse tube cooler is driven by a thermoacoustic oscillator, a heat engine that functions well in remote environments where electricity is not readily available. All three types are described, and in total, nearly half of this proceedings covers new developments in the pulse tube arena. Complementing the work on low-temperature pulse tube and Gifford-McMahon cryocoolers is substantial continued progress on rare earth regenerator materials.


Cryocoolers

Cryocoolers

Author: Milind D. Atrey

Publisher: Springer Nature

Published: 2020-02-24

Total Pages: 243

ISBN-13: 3030113078

DOWNLOAD EBOOK

This book serves as an introduction to cryocooler technology and describes the principle applications of cryocoolers across a broad range of fields. It covers the specific requirements of these applications, and describes how the advantages and disadvantages of different cryocooler systems are taken into consideration. For example, Stirling coolers tend to be used only in space applications because of their high coefficient of performance, low weight and proven reliability, whilst Gifford-McMahon coolers are used for ground applications, such as in cryopumps and MRI shield cooling applications. Joule-Thomson cryocoolers are used in missile technology because of the fast cool down requirements. The cryocooler field is fast developing and the number of applications are growing because of the increasing costs of the cryogens such as Helium and Neon. The first chapter of the book introduces the different types of cryocoolers, their classification, working principles, and their design aspects, and briefly mentions some of the applications of these systems. This introductory chapter is followed by a number of contributions from prominent international researchers, each describing a specific field of application, the cooling requirements and the cryocooler systems employed. These areas of application include gas liquefaction, space technology, medical science, dilution refrigerators, missile systems, and physics research including particle accelerators. Each chapter describes the cooling requirements based on the end use, the approximate cooling load calculations, the criteria for cryocooler selection, the arrangement for cryocooler placement, the connection of the cooler to the object to be cooled, and includes genuine case studies. Intended primarily for researchers working on cryocoolers, the book will also serve as an introduction to cryocooler technology for students, and a useful reference for those using cryocooler systems in any area of application.


Cryogenic Engineering

Cryogenic Engineering

Author: Klaus D. Timmerhaus

Publisher: Springer Science & Business Media

Published: 2007-11-12

Total Pages: 379

ISBN-13: 038746896X

DOWNLOAD EBOOK

This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.


Low Temperature Materials and Mechanisms

Low Temperature Materials and Mechanisms

Author: Yoseph Bar-Cohen

Publisher: CRC Press

Published: 2016-08-19

Total Pages: 518

ISBN-13: 149870039X

DOWNLOAD EBOOK

This book addresses the growing interest in low temperature technologies. Since the subject of low temperature materials and mechanisms is multidisciplinary, the chapters reflect the broadest possible perspective of the field. Leading experts in the specific subject area address the various related science and engineering chemistry, material science, electrical engineering, mechanical engineering, metallurgy, and physics.


Spacecraft Thermal Control Handbook: Cryogenics

Spacecraft Thermal Control Handbook: Cryogenics

Author: David G. Gilmore

Publisher: AIAA

Published: 2002

Total Pages: 674

ISBN-13: 9781884989148

DOWNLOAD EBOOK

The number of satellite systems that require some form of cryogenic cooling has grown enormously over the last several years. With so many engineers, scientists, and technicians working on cryogenic systems for the first time in their careers, the need for a single resource that touched on all the technologies relevant to cryogenics was apparent.


Cryocoolers 12

Cryocoolers 12

Author: Ronald G. Ross

Publisher: Springer Science & Business Media

Published: 2003-03-31

Total Pages: 799

ISBN-13: 0306477149

DOWNLOAD EBOOK

The development and application of cryocoolers - small cryogenic refrigerators designed to provide localized cooling at cryogenic temperatures - is expanding at an ever increasing rate. Small, highly portable cryocoolers are serving growing numbers of advanced infrared sensor and viewing systems; others provide cooling for medical applications, laboratory experiments, vacuum cryopumps, and advanced radio-frequency devices. Long-life spacecraft cooling for space infrared and gamma-ray instruments is a growing field, as is serving the expanding high-temperature superconductor community, and the emerging field of cryogenic cooling of computer systems. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 12 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications. The contributions contained in Cryocoolers 12 will be a valuable asset for researchers, product designers, and development engineers associated with the design and application of cryocoolers to the ever expanding number of military, space, semiconductor, medical, computing, and high-temperature superconductor cryogenic applications.


Advances in Cryogenic Engineering

Advances in Cryogenic Engineering

Author: J. G. Weisend

Publisher: American Institute of Physics

Published: 2008-04-17

Total Pages: 952

ISBN-13: 9780735405042

DOWNLOAD EBOOK

All papers have been peer-reviewed. This conference is the principal North American Conference on cryogenic engineering. It is attended by scientists and engineers from all over the world. The papers published here have been fully refereed and cover all aspects of cryogenic engineering including: refrigeration, superconductivity, cryocoolers, air liquefaction, heat and mass transfer, insulation systems, cryostat design and space cryogenics.


Miniature Joule-Thomson Cryocooling

Miniature Joule-Thomson Cryocooling

Author: Ben-Zion Maytal

Publisher: Springer Science & Business Media

Published: 2012-09-18

Total Pages: 410

ISBN-13: 144198285X

DOWNLOAD EBOOK

This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. •The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types •Theoretical Aspects: the JT effect and its inversion, cooling potential of coolants, the liquefaction process, sizing of heat exchangers, level of pressurization, discharge of pressure vessels • Practical Aspects: modes of operation (fast cooldown, continuous, multi-staging, hybrid cryocoolers), pressure sources, configuration, construction and technologies, flow adjustment, MEMS, open and closed cycle, cooldown process and similarity, transient behavior • Mixed Coolant cryocooling: theory, practice and applications • Special Topics: real gas choked flow rates, gas purity, clog formation, optimal fixed orifice, modeling, cryosurgical devices, warming by the inverse JT effect The theoretical aspects may be of interest not only to those working with cryocoolers but also for others with a general interest in "real" gas thermodynamics, such as, for example, the inversion of the JT effect in its differential and integral forms, and the exceptional behavior of the quantum gases. A detailed list of references for each chapter comprises a broad literature survey. It consists of more than 1,200 relevant publications and 450 related patents. The systematically organized content, arranged under a thorough hierarchy of headings, supported by 227 figures and 41 tables, and accompanied by various chronological notes of evolution, enables readers a friendly interaction with the book. Dr. Ben-Zion Maytal is a Senior Researcher at Rafael-Advanced Defense Systems, Ltd., and an Adjunct Senior Teaching Fellow at the Technion-Israel Institute of Technology, Haifa, Israel. Prof. John M. Pfotenhauer holds a joint appointment in the Departments of Mechanical Engineering and Engineering Physics at the University of Wisconsin - Madison.