Critical Point Theory and Hamiltonian Systems

Critical Point Theory and Hamiltonian Systems

Author: Jean Mawhin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 292

ISBN-13: 1475720610

DOWNLOAD EBOOK

FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN


Critical Point Theory and Its Applications

Critical Point Theory and Its Applications

Author: Wenming Zou

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 323

ISBN-13: 0387329684

DOWNLOAD EBOOK

This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations.


Minimax Methods in Critical Point Theory with Applications to Differential Equations

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Author: Paul H. Rabinowitz

Publisher: American Mathematical Soc.

Published: 1986-07-01

Total Pages: 110

ISBN-13: 0821807153

DOWNLOAD EBOOK

The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.


Symmetry and Perturbation Theory

Symmetry and Perturbation Theory

Author: Simonetta Abenda

Publisher: World Scientific

Published: 2002

Total Pages: 306

ISBN-13: 9812795405

DOWNLOAD EBOOK

This is the fourth conference on OC Supersymmetry and Perturbation TheoryOCO (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc. Contents: An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and SchrAdinger Equations (S Benenti); Partial Symmetries and Symmetric Sets of Solutions to PDE's (G Cicogna); On the Algebro-Geometric Solution of 3 x 3 Matrix Riemann-Hilbert Problem (V Enolski & T Grava); Bifurcations in Flow-Induced Vibration (S Fatimah & F Verhulst); Steklov-Lyapunov Type Systems (Yu N Fedorov); Renormalization Group and Summation of Divergent Series for Hyperbolic Invariant Tori (G Gentile); On the Linearization of Holomorphic Vector Fields in the Siegel Domain with Linear Parts Having Nontrivial Jordan Blocks (T Gramchev); Smooth Normalization of a Vector Field Near an Invariant Manifold (A Kopanskii); Inverse Problems for SL (2) Lattices (V B Kuznetsov); Some Remarks about the Geometry of Hamiltonian Conservation Laws (J-P Ortega); Janet's Algorithm (W Plesken); Some Integrable Billiards (E Previato); Symmetries of Relative Equilibria for Simple Mechanical Systems (M Rodr guez-Olmos & M E Sousa Dias); A Spectral Sequences Approach to Normal Forms (J A Sanders); Rational Parametrization of Strata in Orbit Spaces of Compact Linear Groups (G Sartori & G Valente); Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nuclear Motion in Molecules (V G Tyuterev); Generalized Hasimoto Transformation and Vector Sine-Gordon Equation (J P Wang); and other papers. Readership: Researchers and graduate students in mathematical and theoretical physics, and nonlinear science."


Critical Point Theory

Critical Point Theory

Author: Martin Schechter

Publisher: Springer Nature

Published: 2020-05-30

Total Pages: 347

ISBN-13: 303045603X

DOWNLOAD EBOOK

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.


Morse Theory for Hamiltonian Systems

Morse Theory for Hamiltonian Systems

Author: Alberto Abbondandolo

Publisher: CRC Press

Published: 2001-03-15

Total Pages: 202

ISBN-13: 1482285746

DOWNLOAD EBOOK

This Research Note explores existence and multiplicity questions for periodic solutions of first order, non-convex Hamiltonian systems. It introduces a new Morse (index) theory that is easier to use, less technical, and more flexible than existing theories and features techniques and results that, until now, have appeared only in scattered journals


Critical Point Theory for Lagrangian Systems

Critical Point Theory for Lagrangian Systems

Author: Marco Mazzucchelli

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 196

ISBN-13: 3034801637

DOWNLOAD EBOOK

Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange’s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.


Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology

Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology

Author: Paul Biran

Publisher: Springer Science & Business Media

Published: 2006-02-12

Total Pages: 476

ISBN-13: 1402042663

DOWNLOAD EBOOK

The papers collected in this volume are contributions to the 43rd session of the Seminaire ́ de mathematiques ́ superieures ́ (SMS) on “Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology.” This session took place at the Universite ́ de Montreal ́ in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger ́ , our administrative assistant, for her help with the organi- tion and Mr. Andre ́ Montpetit, our technical editor, for his help in the preparation of the volume.


Handbook of Differential Equations: Ordinary Differential Equations

Handbook of Differential Equations: Ordinary Differential Equations

Author: A. Canada

Publisher: Elsevier

Published: 2005-09-02

Total Pages: 583

ISBN-13: 0080461085

DOWNLOAD EBOOK

This handbook is the second volume in a series devoted to self contained and up-to-date surveys in the theory of ordinary differential equations, writtenby leading researchers in the area. All contributors have made an additional effort to achieve readability for mathematicians and scientists from other related fields, in order to make the chapters of the volume accessible to a wide audience. . Six chapters covering a variety of problems in ordinary differential equations. . Both, pure mathematical research and real word applications are reflected. Written by leading researchers in the area.


Nonlinear Equations: Methods, Models and Applications

Nonlinear Equations: Methods, Models and Applications

Author: Daniela Lupo

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 268

ISBN-13: 3034880871

DOWNLOAD EBOOK

A collection of research articles originating from the Workshop on Nonlinear Analysis and Applications held in Bergamo in July 2001. Classical topics of nonlinear analysis were considered, such as calculus of variations, variational inequalities, critical point theory and their use in various aspects of the study of elliptic differential equations and systems, equations of Hamilton-Jacobi, Schrödinger and Navier-Stokes, and free boundary problems. Moreover, various models were focused upon: travelling waves in supported beams and plates, vortex condensation in electroweak theory, information theory, non-geometrical optics, and Dirac-Fock models for heavy atoms.