Component Reliability under Creep-Fatigue Conditions

Component Reliability under Creep-Fatigue Conditions

Author: Janos Ginsztler

Publisher: Springer

Published: 2014-05-04

Total Pages: 247

ISBN-13: 3709125162

DOWNLOAD EBOOK

Failure prevention, residual life assessment and life extension of materials in components operating at high temperatures are becoming increasingly important problems in the modern power plant industry. These problems are covered, and industrial examples will be introduced to illustrate the applications of those subjects covered using the results from service records.


Fatigue Life Prediction of Composites and Composite Structures

Fatigue Life Prediction of Composites and Composite Structures

Author: Anastasios P. Vassilopoulos

Publisher: Woodhead Publishing

Published: 2019-10-08

Total Pages: 766

ISBN-13: 0081025769

DOWNLOAD EBOOK

Fatigue Life Prediction of Composites and Composite Structures, Second Edition, is a comprehensive review of fatigue damage and fatigue life modeling and prediction methodologies for composites and their use in practice. In this new edition, existing chapters are fully updated, while new chapters are introduced to cover the most recent developments in the field. The use of composites is growing in structural applications in many industries, including aerospace, marine, wind turbine and civil engineering. However, there are uncertainties about their long-term performance, including performance issues relating to cyclic fatigue loading that hinder the adoption of a commonly accepted credible fatigue design methodology for the life prediction of composite engineering structures. With its distinguished editor and international team of contributors, this book is a standard reference for industry professionals and researchers alike. - Examines past, present and future trends associated with the fatigue life prediction of composite materials and structures - Assesses novel computational methods for fatigue life modeling and prediction of composite materials under constant amplitude loading - Covers a wide range of techniques for predicting fatigue, including their theoretical background and practical applications - Addresses new topics and covers contemporary research developments in the field


Positrons in Solids

Positrons in Solids

Author: P. Hautojärvi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 364281316X

DOWNLOAD EBOOK

In condensed matter initially fast positrons annihilate after having reached equi librium with the surroundings. The interaction of positrons with matter is governed by the laws of ordinary quantum mechanics. Field theory and antiparticle properties enter only in the annihilation process leading to the emergence of energetic photons. The monitoring of annihilation radiation by nuclear spectroscopic methods provides valuable information on the electron-positron system which can directly be related to the electronic structure of the medium. Since the positron is a positive electron its behavior in matter is especially interesting to solid-state and atomic physi cists. The small mass quarantees that the positron is really a quantum mechanical particle and completely different from any other particles and atoms. Positron physics started about 25 years ago but discoveries of new features in its interac tion with matter have maintained continuous interest and increasing activity in the field. Nowadays it is becoming part of the "stock-in-trade" of experimental physics.


Application of Fracture Mechanics to Cementitious Composites

Application of Fracture Mechanics to Cementitious Composites

Author: S.P. Shah

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 701

ISBN-13: 9400951213

DOWNLOAD EBOOK

Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.


Handbook of Fatigue Crack Propagation in Metallic Structures

Handbook of Fatigue Crack Propagation in Metallic Structures

Author: A. Carpinteri

Publisher: Newnes

Published: 2012-12-02

Total Pages: 834

ISBN-13: 0444600329

DOWNLOAD EBOOK

The purpose of this Handbook is to provide a review of the knowledge and experiences in the field of fatigue fracture mechanics. It is well-known that engineering structures can fail due to cyclic loading. For instance, a cyclically time-varying loading reduces the structure strength and can provoke a fatigue failure consisting of three stages: (a) crack initiation (b) crack propagation and (c) catastrophic failure. Since last century many scientists have tried to understand the reasons for the above-mentioned failures and how to prevent them. This Handbook contains valuable contributions from leading experts within the international scientific community and covers many of the important problems associated with the fatigue phenomena in civil, mechanical and nuclear engineering.


Damage and Fracture Mechanics

Damage and Fracture Mechanics

Author: Taoufik Boukharouba

Publisher: Springer Science & Business Media

Published: 2009-08-09

Total Pages: 616

ISBN-13: 904812669X

DOWNLOAD EBOOK

The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.