In arid and semi-arid areas, the main contributions to land surface processes are precipitation, surface evaporation and surface energy balancing. In the close-to-surface layer and root-zone layer, vapor flux is the dominant flux controlling these processes - process which, in turn, influence the local climate pattern and the local ecosystem. The work reported in this thesis attempts to understand how the soil airflow affects the vapor transport during evaporation processes, by using a two-phase heat and mass transfer model. The necessity of including the airflow mechanism in land surface process studies is discussed and highlighted.
Proceedings of the NATO Advanced Research Workshop on Coupled Site and Soil-Structure Interaction Effects with Application to Seismic Risk Mitigation Borovets, Bulgaria 30 August - 3 September 2008
This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the ‘Vehicle–Track Coupled Dynamics’. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle–track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel–rail interaction. This new theory enables a more comprehensive and accurate solution to the train–track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering. /div
This book introduces an interdisciplinary framework to understand the interaction between terrestrial ecosystems and climate change. It reviews basic meteorological, hydrological and ecological concepts to examine the physical, chemical and biological processes by which terrestrial ecosystems affect and are affected by climate. The textbook is written for advanced undergraduate and graduate students studying ecology, environmental science, atmospheric science and geography. The central argument is that terrestrial ecosystems become important determinants of climate through their cycling of energy, water, chemical elements and trace gases. This coupling between climate and vegetation is explored at spatial scales from plant cells to global vegetation geography and at timescales of near instantaneous to millennia. The text also considers how human alterations to land become important for climate change. This restructured edition, with updated science and references, chapter summaries and review questions, and over 400 illustrations, including many in colour, serves as an essential student guide.
"Physiology," which is the study of the function of cells, organs, and organisms, derives from the Latin physiologia, which in turn comes from the Greek physi- or physio-, a prefix meaning natural, and logos, meaning reason or thought. Thus physiology suggests natural science and is now a branch of biology dealing with processes and activities that are characteristic of living things. "Physicochemical" relates to physical and chemical properties, and "Environmental" refers to topics such as solar irradiation and wind. "Plant" indicates the main focus of this book, but the approach, equations developed, and appendices apply equalIy welI to animaIs and other organisms. We wilI specificalIy consider water relations, solute transport, photosynthesis, transpiration, respiration, and environmental interactions. A physiologist endeavors to understand such topics in physical and chemical terms; accurate models can then be constructed and responses to the internal and the external environment can be predicted. Elementary chemistry, physics, and mathematics are used to develop concepts that are key to under-standing biology -the intent is to provide a rigorous development, not a compendium of facts. References provide further details, although in some cases the enunciated principIes carry the reader to the forefront of current research. Calculations are used to indicate the physiological consequences of the various equations, and problems at the end of chapters provide further such exercises. Solutions to alI of the problems are provided, and the appendixes have a large tist of values for constants and conversion factors at various temperatures.
Soil Dynamics and Earthquake Engineering (GSP 201) contains 43 papers which examine a variety of topics in soil dynamics and earthquake engineering. This Geotechnical Special Publication is divided into three groups: the dynamic soil-structural interactions under seismic loads, the dynamic properties of soils and rocks, and seismic zoning and earthquake hazard assessment. These papers cover important issues such as the dynamic responses of earth dams, pile and pile groups, soil nailing, tunnel, landfills and shallow foundations. The papers in this publication were presented during the GeoShanghai 2010 International Conference held in Shanghai, China, June 3-5, 2010.
Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf
The majority of the cases of earthquake damage to buildings, bridges, and other retaining structures are influenced by soil and ground conditions. To address such phenomena, Soil Dynamics and Earthquake Engineering is the appropriate discipline. This textbook presents the fundamentals of Soil Dynamics, combined with the basic principles, theories and methods of Geotechnical Earthquake Engineering. It is designed for senior undergraduate and postgraduate students in Civil Engineering & Architecture. The text will also be useful to young faculty members, practising engineers and consultants. Besides, teachers will find it a useful reference for preparation of lectures and for designing short courses in Soil Dynamics and Geotechnical Earthquake Engineering. The book first presents the theory of vibrations and dynamics of elastic system as well as the fundamentals of engineering seismology. With this background, the readers are introduced to the characteristics of Strong Ground Motion, and Deterministic and Probabilistic seismic hazard analysis. The risk analysis and the reliability process of geotechnical engineering are presented in detail. An in-depth study of dynamic soil properties and the methods of their determination provide the basics to tackle the dynamic soil–structure interaction problems. Practical problems of dynamics of beam–foundation systems, dynamics of retaining walls, dynamic earth pressure theory, wave propagation and liquefaction of soil are treated in detail with illustrative examples.
This book presents a comprehensive topical overview on soil dynamics and foundation modeling in offshore and earthquake engineering. The spectrum of topics include, but is not limited to, soil behavior, soil dynamics, earthquake site response analysis, soil liquefactions, as well as the modeling and assessment of shallow and deep foundations. The author provides the reader with both theory and practical applications, and thoroughly links the methodological approaches with engineering applications. The book also contains cutting-edge developments in offshore foundation engineering such as anchor piles, suction piles, pile torsion modeling, soil ageing effects and scour estimation. The target audience primarily comprises research experts and practitioners in the field of offshore engineering, but the book may also be beneficial for graduate students.