This is where the learning begins! Counting & Sequencing introduces numbers 0 to 20 one at a time through pictures, rhymes, and stories, so children can master counting each number before moving on. The fun activities help children recognize and count numbers 0 to 20 while also developing their sequencing and critical thinking skills, early reading comprehension, and their ability to follow directions. The six titles in the Basic Beginnings series are an essential and fun resource designed to nurture engaged learning for every child. Each book features 64 pages of colorful activities, mazes, and pictures, as well as three mini books to color, cut out, and share!
For some time now, the study of cognitive development has been far and away the most active discipline within developmental psychology. Although there would be much disagreement as to the exact proportion of papers published in developmental journals that could be considered cognitive, 50% seems like a conservative estimate. Hence, a series of scholary books to be devoted to work in cognitive development is especially appropriate at this time. The Springer Series in Cognitive Development contains two basic types of books, namely, edited collections of original chapters by several authors, and original volumes written by one author or a small group of authors. The flagship for the Springer Series is a serial publication of the "advances" type, carrying the subtitle Progress in Cognitive Development Research. Volumes in the Progress sequence are strongly thematic, in that each is limited to some well-defined domain of cognitive developmental research (e. g. , logical and mathematical development, semantic development). All Progress volumes are edited collections. Editors of such books, upon consultation with the Series Editor, may elect to have their works published either as contributions to the Progress sequence or as separate volumes. All books written by one author or a small group of authors will be published as separate volumes within the series. is being used in the selec A fairly broad definition of cognitive development tion of books for this series.
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common knowledge and competencies needed to do their jobs well. Transforming the Workforce for Children Birth Through Age 8 explores the science of child development, particularly looking at implications for the professionals who work with children. This report examines the current capacities and practices of the workforce, the settings in which they work, the policies and infrastructure that set qualifications and provide professional learning, and the government agencies and other funders who support and oversee these systems. This book then makes recommendations to improve the quality of professional practice and the practice environment for care and education professionals. These detailed recommendations create a blueprint for action that builds on a unifying foundation of child development and early learning, shared knowledge and competencies for care and education professionals, and principles for effective professional learning. Young children thrive and learn best when they have secure, positive relationships with adults who are knowledgeable about how to support their development and learning and are responsive to their individual progress. Transforming the Workforce for Children Birth Through Age 8 offers guidance on system changes to improve the quality of professional practice, specific actions to improve professional learning systems and workforce development, and research to continue to build the knowledge base in ways that will directly advance and inform future actions. The recommendations of this book provide an opportunity to improve the quality of the care and the education that children receive, and ultimately improve outcomes for children.
The authors report the results of some half dozen years of research into when and how children acquire numerical skills. They provide a new set of answers to these questions, and overturn much of the traditional wisdom on the subject. Table of Contents: 1. Focus on the Preschooler 2. Training Studies Reconsidered 3. More Capacity Than Meets the Eye: Direct Evidence 4. Number Concepts in the Preschooler? 5. What Numerosities Can the Young Child Represent? 6. How Do Young Children Obtain Their Representations of Numerosity? 7. The Counting Model 8. The Development of the How-To-Count Principles 9. The Abstraction and Order-Irrelevance Counting Principles 10. Reasoning about Number 11. Formal Arithmetic and the Young Child's Understanding of Number 12. What Develops and How Conclusions References Index Reviews of this book: The publication of this book may mark a sea change in the way that we think about cognitive development. For the past two decades, the emphasis has been on young children's limitations... Now a new trend is emerging: to challenge the original assumption of young children's cognitive incapacity. The Child's Understanding of Number represents the most original and provocative manifestation to date of this new trend. --Contemporary Psychology Reviews of this book: Here at last is the book we have been waiting for, or at any rate known we needed, on the young child and number. The authors are at once sophisticated in their own understanding of number and rich in psychological intuition. They present a wealth of good experiments to support and guide their intuitions. And all is told in so simple and unalarming a manner that even the most pusillanimous will be able to read with enjoyment. --Canadian Journal of Psychology
This book provides international perspectives on the use of digital technologies in primary, lower secondary and upper secondary school mathematics. It gathers contributions by the members of three topic study groups from the 13th International Congress on Mathematical Education and covers a range of themes that will appeal to researchers and practitioners alike. The chapters include studies on technologies such as virtual manipulatives, apps, custom-built assessment tools, dynamic geometry, computer algebra systems and communication tools. Chiefly focusing on teaching and learning mathematics, the book also includes two chapters that address the evidence for technologies’ effects on school mathematics. The diverse technologies considered provide a broad overview of the potential that digital solutions hold in connection with teaching and learning. The chapters provide both a snapshot of the status quo of technologies in school mathematics, and outline how they might impact school mathematics ten to twenty years from now.
Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education brings together the combined wisdom of a diverse group of experts involved with early childhood mathematics. The book originates from the landmark 2000 Conference on Standards for Pre-kindergarten and Kindergarten Mathematics Education, attended by representatives from almost every state developing standards for young children's mathematics; federal government officials; mathematicians; mathematics educators; researchers from mathematics education, early childhood education, and psychology; curriculum developers; teachers; policymakers; and professionals from organizations such as the National Conference of Teachers of Mathematics and the National Association for the Education of Young Children. The main goal of the Conference was to work collectively to help those responsible for framing and implementing early childhood mathematics standards. Although it has its roots in the Conference, the expanded scope of the standards and recommendations covered in this book includes the full range of kindergarten to grade 2. The volume is organized into two main parts and an online appendix (http://www.gse.buffalo.edu/org/conference/). Part One, Major Themes and Recommendations, offers a framework for thinking about pre-kindergarten - grade 2 mathematics education and specific recommendations. Part Two, Elaboration of Major Themes and Recommendations, provides substantive detail regarding young students' understandings of mathematical ideas. Each Part includes five parallel subsections: "Standards in Early Childhood Education"; "Math Standards and Guidelines"; "Curriculum, Learning, Teaching, and Assessment"; "Professional Development"; and "Toward the Future: Implementation and Policy." As a whole the book: * presents comprehensive summaries of research that provide specific guidelines for standards, curriculum, and teaching; * takes the recent reports and recommendations for early childhood mathematics education to the next level; * integrates practical details and research throughout; and * provides a succinct, but thorough review of research on the topics, sequences, and learning trajectories that children can and should learn at each of their first years of life, with specific developmental guidelines that suggest appropriate content for each topic for each year from 2-year-olds to 7-year-olds. This is an indispensable volume for mathematics educators, researchers, curriculum developers, teachers and policymakers, including those who create standards, scope and sequences, and curricula for young children and professional teacher development materials, and students in mathematics education, early childhood trainers, teacher educators, and faculty in mathematics education.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.