This is the first English edition of an established work on cost-driven product design and development. It offers tried and tested methods for understanding, influencing and reducing product costs. The methodology and organization of cost management, as well as the effects on each type of cost are described. Using this knowledge the product developer can assume responsibility for costs. There are numerous examples and detailed derivation of results.
A successful engineer and entrepreneur shares his secrets for producing consistently superior designs at substantial cost savings. Minimum constraint design (MinCD) is a new systematic design strategy that yields major cost reductions and greatly improves the reliability of manufactured mechanisms. For the first time, this practical reference provides the "how-to-do-it" information you need to put this powerful design tool to work right away -- no matter what your level of training or experience. Based upon the author's extensive experience in product design, this timely book clearly explains the advantages of MinCD and tells you how to create better, more cost-efficient product designs using readily available commercial components. Packed with original ideas, design tips, helpful examples, and references - including directories of component vendors - this unique blend of practical and theoretical knowledge will revolutionize the way you work. Contents include: Part 1 - Minimum Constraint Design (MinCD), Semi-MinCD, and Redundant Constraint Design (RedCD) General Description Degrees of Constraint Kinds of Constraint Beneficial Non-MinCD Part 2 - Designing with Commercial Components General Discussion Rotary Motion Linear Motion Power Other Components Part 3 - Topics in Design Engineering Designing with Uncommon Manufacturing Processes Manfacturing Engineering Optimum Level of Mechanization and Automation Robots Robot Grippers Selecting Power Forms Backlash Hype Prod Deterioration Electrical and Mechanical Technologies: Competition and Cooperation References and Bibliography Reviews
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies
The role and influence of building services engineers are undergoing rapid change and are pivotal to achieving low-carbon buildings. However, textbooks in the field have tended to remain fairly traditional with a detailed focus on the technicalities of heating, ventilation and air conditioning (HVAC) systems, often with little wider context. This book addresses that need by embracing a contemporary understanding of the urgent challenge to address climate change, together with practical approaches to energy efficiency and carbon mitigation for mechanical and electrical systems, in a concise manner. The essential conceptual design issues for planning the principal building services systems that influence energy efficiency are examined in detail. These are HVAC and electrical systems. In addition, the following issues are addressed: background issues on climate change, whole-life performance and design collaboration generic strategies for energy efficient, low-carbon design health and wellbeing and post occupancy evaluation building ventilation air conditioning and HVAC system selection thermal energy generation and distribution systems low-energy approaches for thermal control electrical systems, data collection, controls and monitoring building thermal load assessment building electric power load assessment space planning and design integration with other disciplines. In order to deliver buildings that help mitigate climate change impacts, a new perspective is required for building services engineers, from the initial conceptual design and throughout the design collaboration with other disciplines. This book provides a contemporary introduction and guide to this new approach, for students and practitioners alike.
The author provides a full-range of cost options on how to prevent EMI: from inexpensive enclosures that are adequate for many situations to the most advanced shielding techniques used in scientific applications. This unique book will show the reader how to select the most suitable technique for the application: something that will do the job, yet avoid expensive and time-consuming "overkill." Design of Shielded Enclosures provides a variety of practical techniques that will reveal how well an enclosure is working without a lot of expensive and time-consuming tests. This book will also show how to determine when detailed testing is necessary. Get quick, effective, and economical solutions to pressing engineering problems that are halting delivery, stopping production and costing money Learn the best tricks of the trade from a certified EMI professional with years of experience and a wealth of knowledge about practical applications Discover important testing and troubleshooting techniques for EMI shielding
Your building has the potential to change the world. Existing buildings consume approximately 40 percent of the energy and emit nearly half of the carbon dioxide in the US each year. In recognition of the significant contribution of buildings to climate change, the idea of building green has become increasingly popular. But is it enough? If an energy-efficient building is new construction, it may take 10 to 80 years to overcome the climate change impacts of the building process. New buildings are sexy, but few realize the value in existing buildings and how easy it is to get to “zero energy” or low-energy consumption through deep energy retrofits. Existing buildings can and should be retrofit to reduce environmental impacts that contribute to climate change, while improving human health and productivity for building occupants. In The Power of Existing Buildings, academic sustainability expert Robert Sroufe, and construction and building experts Craig Stevenson and Beth Eckenrode, explain how to realize the potential of existing buildings and make them perform like new. This step-by-step guide will help readers to: understand where to start a project; develop financial models and realize costs savings; assemble an expert team; and align goals with numerous sustainability programs. The Power of Existing Buildings will challenge you to rethink spaces where people work and play, while determining how existing buildings can save the world. The insights and practical experience of Sroufe, Stevenson, and Eckenrode, along with the project case study examples, provide new insights on investing in existing buildings for building owners, engineers, occupants, architects, and real estate and construction professionals. The Power of Existing Buildings helps decision-makers move beyond incremental changes to holistic, results-oriented solutions.
Streamlined Design Solutions Specifically for NoC To solve critical network-on-chip (NoC) architecture and design problems related to structure, performance and modularity, engineers generally rely on guidance from the abundance of literature about better-understood system-level interconnection networks. However, on-chip networks present several distinct challenges that require novel and specialized solutions not found in the tried-and-true system-level techniques. A Balanced Analysis of NoC Architecture As the first detailed description of the commercial Spidergon STNoC architecture, Design of Cost-Efficient Interconnect Processing Units: Spidergon STNoC examines the highly regarded, cost-cutting technology that is set to replace well-known shared bus architectures, such as STBus, for demanding multiprocessor system-on-chip (SoC) applications. Employing a balanced, well-organized structure, simple teaching methods, numerous illustrations, and easy-to-understand examples, the authors explain: how the SoC and NoC technology works why developers designed it the way they did the system-level design methodology and tools used to configure the Spidergon STNoC architecture differences in cost structure between NoCs and system-level networks From professionals in computer sciences, electrical engineering, and other related fields, to semiconductor vendors and investors – all readers will appreciate the encyclopedic treatment of background NoC information ranging from CMPs to the basics of interconnection networks. The text introduces innovative system-level design methodology and tools for efficient design space exploration and topology selection. It also provides a wealth of key theoretical and practical MPSoC and NoC topics, such as technological deep sub-micron effects, homogeneous and heterogeneous processor architectures, multicore SoC, interconnect processing units, generic NoC components, and embeddings of common communication patterns.
In today’s dynamic practice environment, collaboration and teamwork skills are increasingly critical to the successful completion of building projects. Indeed, it is the careful nurturing of comradeship among complementary but distinctive egos that drives creativity underlying the hi-tech algorithms that help shape complex projects. Designing Relationships: The Art of Collaboration in Architecture focuses on the skill set necessary to facilitate effective teamwork and collaboration among all stakeholders no matter what project delivery mode or technology is deployed. This book provides valuable guidance on how to design and construct buildings in a team context from inception to completion. It is the less tangible elements of collaboration and teamwork that provide the magic that transforms the most challenging projects into great works of architecture, and it is these more nuanced and subtle skills which the book brings to the fore. Showing examples of best and worst practice to illustrate the principles with real-life situations, this book presents the reader with an approach that is flexible and applicable to their everyday working life.
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors