This text describes the relationship between mission opera- tions and the other elements of the space mission. It defines the process that translates mission objectives and requirements into a viable mission operations concept. It describes how interplanetary, international, microsatellite, and crewed missions operate.
Cost-Effective Space Mission Operations, Second Edition describes the relationship between mission operations and the other elements of the space mission as well as specific operations tasks. This book defines a process that helps the mission operations manager translate mission objectives and requirements into a viable mission operations concept. The mission operations manager must develop this operations concept early enough, during concept exploration, so that the project manager can trade the future cost of operations against current development costs. Written for professionals and students involved in systems engineering and operations in space, this book is valuable for program managers, mission operations managers, spacecraft engineers and designers, project scientists and operators. Cost-Effective Space Mission Operations includes detailed descriptions of thirteen mission operations functions, provides a process for developing a mission operations concept, and describes a model for evaluating the cost and complexity of an operations system. The book also covers how to conduct routine, launch and early-orbit, and special operations, as well as how to operate interplanetary, international, microsatellite, and crewed missions.
Reducing Space Mission Cost is the first complete treatment of the technology, process, and problems in the most critical areas of modern spaceflight. The demand to reduce cost is unrelenting. This pioneering book addresses all aspects of this problem, including: Technology and processes for reducing cost Cost reduction in mission engineering, spacecraft design, manufacture, launch, and operations Implementation methods and problems The price of reducing cost 10 detailed case studies of what works in practice in: Science missions Interplanetary probes Communications spacecraft Test and Applications missions Beginning on the inside front cover, this book provides real cost data on a variety of missions, systems, and subsystems. According to the authors: `Reducing mission cost is hard enough if you know what the real costs are, and virtually impossible if you don't.' This book challenges traditional methods, yet recognizes that all space programs are run to minimize cost within the rules under which they are built and flown. It provides practical recipes for reducing cost in both new and ongoing missions and discusses what works, what government can do to help, and what methods intended to reduce cost may be counterproductive and unintentionally increase cost. As shown on the inside rear cover, the case studies described in the book have reduced total mission cost by 80% to more than 90% with respect to projections by traditional cost methods. This book is a follow-on to the now standard text and reference, Space Mission Analysis and Design, also edited by Drs. Wertz and Larson. It is required reading for professionals, students, and managers in astronautics or space sciences and managers or scientists involved in space experiments. This book shows that reducing space mission cost, without reducing reliability, is as possible as it is important for the future of space exploration.
It is within the means of many nations to conduct or participate in cost-effective Earth observation missions. This study provides a definition of cost-effective Earth observation missions and information about background material and organizational support. It discusses cost drivers and provides advice on achieving cost-effective missions and discusses training and education. The conclusions and recommendations range from more general factors, which drive the small satellite mission activities, to visions of future cost-effective Earth observation missions. Complementary to large complex missions, small satellite missions have specific advantages: more frequent missions opportunities and therefore faster return of science and application data, a larger variety of missions and greater diversification of potential users; more rapid expansion of the technical and/or scientific knowledge base; greater involvement of local and small industry. This volume will prove to be a useful source of information to governments, space agencies, academia, and industry.
In the early 1990s, NASA Goddard Space Flight Center started researching and developing autonomous and autonomic ground and spacecraft control systems for future NASA missions. This research started by experimenting with and developing expert systems to automate ground station software and reduce the number of people needed to control a spacecraft. This was followed by research into agent-based technology to develop autonomous ground c- trol and spacecraft. Research into this area has now evolved into using the concepts of autonomic systems to make future space missions self-managing and giving them a high degree of survivability in the harsh environments in which they operate. This book describes much of the results of this research. In addition, it aimstodiscusstheneededsoftwaretomakefutureNASAspacemissionsmore completelyautonomousandautonomic.Thecoreofthesoftwareforthesenew missions has been written for other applications or is being applied gradually in current missions, or is in current development. It is intended that this book should document how NASA missions are becoming more autonomous and autonomic and should point to the way of making future missions highly - tonomous and autonomic. What is not covered is the supporting hardware of these missions or the intricate software that implements orbit and at- tude determination, on-board resource allocation, or planning and scheduling (though we refer to these technologies and give references for the interested reader).
"Human spaceflight: mission analysis and design" is for you if you manage, design, or operate systems for human spaceflight! It provides end-to-end coverage of designing human space systems for Earth, Moon, and Mars. If you are like many others, this will become the dog-eared book that is always on your desk -and used. The book includes over 800 rules of thumb and sanity checks that will enable you to identify key issues and errors early in the design processes. This book was written by group of 67 professional engineers, managers, and educators from industry, government, and academia that collectively share over 600 years of space-related experience! The team from the United States, Austria, Canada, France, Germany, Japan, and Russia worked for four-and-one-half years to capture industry and government best practices and lessons-learned from industry and government in an effort to baseline global conceptual design experience for human spaceflight. "Human spaceflight: mission analysis and design" provides a much-needed big-picture perspective that can be used by managers, engineers and students to integrate the myriad of elements associated with human spaceflight.
1. Introduction / 2. Space system fundamentals / 3. Reviewing a cost estimate / 4. Space vehicle cost crosschecks / 5. Common issues in estimating space programs / 6. Resources for space system cost estimation / 7. Recommendations.