Convection and Substorms

Convection and Substorms

Author: Charles F. Kennel

Publisher: Oxford University Press

Published: 1996-02-08

Total Pages: 429

ISBN-13: 0195359070

DOWNLOAD EBOOK

The magnetosphere is the region where cosmic rays and the solar wind interact with the Earth's magnetic field, creating such phenomena as the northern lights and other aurorae. The configuration and dynamics of the magnetosphere are of interest to planetary physicists, geophysicists, plasma astrophysicists, and to scientists planning space missions. The circulation of solar wind plasma in the magnetosphere and substorms have long been used as the principle paradigms for studying this vital region. Charles F. Kennel, a leading scientist in the field, here presents a synthesis of the convection and substorm literatures, and an analysis of convection and substorm interactions; he also suggests that the currently accepted steady reconnection model may be advantageously replaced by a model of multiple tail reconnection events, in which many mutually interdependent reconnections occur. Written in an accessible, non-mathematical style, this book introduces the reader to the exciting discoveries in this fast-growing field.


Extreme Events in Geospace

Extreme Events in Geospace

Author: Natalia Buzulukova

Publisher: Elsevier

Published: 2017-12-01

Total Pages: 800

ISBN-13: 0128127015

DOWNLOAD EBOOK

Extreme Events in Geospace: Origins, Predictability, and Consequences helps deepen the understanding, description, and forecasting of the complex and inter-related phenomena of extreme space weather events. Composed of chapters written by representatives from many different institutions and fields of space research, the book offers discussions ranging from definitions and historical knowledge to operational issues and methods of analysis. Given that extremes in ionizing radiation, ionospheric irregularities, and geomagnetically induced currents may have the potential to disrupt our technologies or pose danger to human health, it is increasingly important to synthesize the information available on not only those consequences but also the origins and predictability of such events. Extreme Events in Geospace: Origins, Predictability, and Consequences is a valuable source for providing the latest research for geophysicists and space weather scientists, as well as industries impacted by space weather events, including GNSS satellites and radio communication, power grids, aviation, and human spaceflight. The list of first/second authors includes M. Hapgood, N. Gopalswamy, K.D. Leka, G. Barnes, Yu. Yermolaev, P. Riley, S. Sharma, G. Lakhina, B. Tsurutani, C. Ngwira, A. Pulkkinen, J. Love, P. Bedrosian, N. Buzulukova, M. Sitnov, W. Denig, M. Panasyuk, R. Hajra, D. Ferguson, S. Lai, L. Narici, K. Tobiska, G. Gapirov, A. Mannucci, T. Fuller-Rowell, X. Yue, G. Crowley, R. Redmon, V. Airapetian, D. Boteler, M. MacAlester, S. Worman, D. Neudegg, and M. Ishii. - Helps to define extremes in space weather and describes existing methods of analysis - Discusses current scientific understanding of these events and outlines future challenges - Considers the ways in which space weather may affect daily life - Demonstrates deep connections between astrophysics, heliophysics, and space weather applications, including a discussion of extreme space weather events from the past - Examines national and space policy issues concerning space weather in Australia, Canada, Japan, the United Kingdom, and the United States


Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System

Author: Yukitoshi Nishimura

Publisher: Elsevier

Published: 2021-12-07

Total Pages: 566

ISBN-13: 0128213736

DOWNLOAD EBOOK

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. - Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics - Reviews recent and key findings in the cutting-edge of the science - Discusses open questions and pathways for understanding how the field is evolving


Space Physics and Aeronomy, Magnetospheres in the Solar System

Space Physics and Aeronomy, Magnetospheres in the Solar System

Author: Romain Maggiolo

Publisher: John Wiley & Sons

Published: 2021-05-04

Total Pages: 61

ISBN-13: 1119507529

DOWNLOAD EBOOK

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief


Handbook of Atmospheric Electrodynamics (1995)

Handbook of Atmospheric Electrodynamics (1995)

Author: Hans Volland

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 526

ISBN-13: 1351364197

DOWNLOAD EBOOK

The participation of such diverse scientific and technical disciplines as meteorology, astronomy, atmospheric electricity, ionospheric and magnetospheric physics, electromagnetic wave propagation, and radio techniques in the research of atmospherics means that results are published in scientific papers widely spread throughout the literature. This Handbook collects the latest knowledge on atmospherics and presents it in two volumes. Each chapter is written by an expert in his or her field. Topics include the physics of thunderclouds, thunder, global atmospheric electric currents, biological aspects of sferics, and various space techniques for detecting lightning within our own atmosphere as well as in the atmospheres of other planets. Up-to-date applications and methodology are detailed. Volumes I and II offer a comprehensive discussion that together will serve as an important resource for practitioners, professionals, and students alike.


Basic Space Plasma Physics

Basic Space Plasma Physics

Author: Wolfgang Baumjohann

Publisher: World Scientific

Published: 1996-09-20

Total Pages: 341

ISBN-13: 1911298062

DOWNLOAD EBOOK

This textbook deals with the requirements of space physics. The first part starts with a description of the Earth's plasma environment, followed by a derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Then the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling are discussed.The second part of the book presents a more theoretical foundation of plasma physics, starting from kinetic theory. Introducing moments of the distribution function permits derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples. Finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.A representative selection of the many space plasma instabilities and relevant aspects of nonlinear theory is given in a companion textbook, Advanced Space Plasma Physics, by the same authors.


Planetary Atmospheric Electricity

Planetary Atmospheric Electricity

Author: François Leblanc

Publisher: Springer Science & Business Media

Published: 2008-12-04

Total Pages: 373

ISBN-13: 0387876634

DOWNLOAD EBOOK

This book is a comprehensive discussion of all issues related to atmospheric electricity in our solar system. It details atmospheric electricity on Earth and other planets and discusses the development of instruments used for observation.


Basic Space Plasma Physics (Third Edition)

Basic Space Plasma Physics (Third Edition)

Author: Wolfgang Baumjohann

Publisher: World Scientific

Published: 2022-02-11

Total Pages: 528

ISBN-13: 9811254079

DOWNLOAD EBOOK

This textbook describes Earth's plasma environment from single particle motion in electromagnetic fields, with applications to Earth's magnetosphere, up to plasma wave generation and wave-particle interaction. The origin and effects of collisions and conductivities are discussed in detail, as is the formation of the ionosphere, the origin of magnetospheric convection and magnetospheric dynamics in solar wind-magnetosphere coupling, the evolution of magnetospheric storms, auroral substorms, and auroral phenomena of various kinds.The second half of the book presents the theoretical foundation of space plasma physics, from kinetic theory of plasma through the formation of moment equations and derivation of magnetohydrodynamic theory of plasmas. The validity of this theory is elucidated, and two-fluid theory is presented in more detail. This is followed by a brief analysis of fluid boundaries, with Earth's magnetopause and bow shock as examples. The main emphasis is on the presentation of fluid and kinetic wave theory, deriving the relevant wave modes in a high temperature space plasma. Plasma instability is the most important topic in all applications and is discussed separately, including a section on thermal fluctuations. These theories are applied to the most interesting problems in space plasma physics, collisionless reconnection and collisionless shock waves with references provided. The Appendix includes the most recent developments in the theory of statistical particle distributions in space plasma, the Kappa distribution, etc, also including a section on space plasma turbulence and emphasizing on new observational developments with a dimensional derivation of the Kolmogorov spectrum, which might be instructive for the student who may worry about its origin.The book ends with a section on space climatology, space meteorology and space weather, a new application field in space plasma physics that is of vital interest when considering the possible hazards to civilization from space.