The symposium discusses and explores the current and future development of some aspects of the theory of nonlinear control systems, adaptive control and filtering, robust control and H∞ optimization, stochastic systems and white noise analysis, etc.
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
World leading experts give their accounts of the modern mathematical models in the field: Markov Decision Processes, controlled diffusions, piece-wise deterministic processes etc, with a wide range of performance functionals. One of the aims is to give a general view on the state-of-the-art. The authors use Dynamic Programming, Convex Analytic Approach, several numerical methods, index-based approach and so on. Most chapters either contain well developed examples, or are entirely devoted to the application of the mathematical control theory to real life problems from such fields as Insurance, Portfolio Optimization and Information Transmission. The book will enable researchers, academics and research students to get a sense of novel results, concepts, models, methods, and applications of controlled stochastic processes.
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.
This book provides an update of the latest research in control of time delay systems and applications by world leading experts. It will appeal to engineers, researchers and students in Control.
The safe and reliable operation of technical systems is of great significance for the protection of human life and health, the environment, and of the vested economic value. The correct functioning of those systems has a profound impact also on production cost and product quality. The early detection of faults is critical in avoiding performance degradation and damage to the machinery or human life. Accurate diagnosis then helps to make the right decisions on emergency actions and repairs. Fault detection and diagnosis (FDD) has developed into a major area of research, at the intersection of systems and control engineering, artificial intelligence, applied mathematics and statistics, and such application fields as chemical, electrical, mechanical and aerospace engineering. IFAC has recognized the significance of FDD by launching a triennial symposium series dedicated to the subject. The SAFEPROCESS Symposium is organized every three years since the first symposium held in Baden-Baden in 1991. SAFEPROCESS 2006, the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes was held in Beijing, PR China. The program included three plenary papers, two semi-plenary papers, two industrial talks by internationally recognized experts and 258 regular papers, which have been selected out of a total of 387 regular and invited papers submitted. * Discusses the developments and future challenges in all aspects of fault diagnosis and fault tolerant control * 8 invited and 36 contributed sessions included with a special session on the demonstration of process monitoring and diagnostic software tools
This volume is the outcome of the first CASY workshop on "Advances in Control Theory and Applications" which was held at University of Bologna on May 22-26, 2006. It consists of selected contributions by some of the invited speakers and contains recent results in control. The volume is intended for engineers, researchers, and students in control engineering.