Optimal Control of Systems Governed by Partial Differential Equations

Optimal Control of Systems Governed by Partial Differential Equations

Author: Jacques Louis Lions

Publisher: Springer

Published: 2011-11-12

Total Pages: 400

ISBN-13: 9783642650260

DOWNLOAD EBOOK

1. The development of a theory of optimal control (deterministic) requires the following initial data: (i) a control u belonging to some set ilIi ad (the set of 'admissible controls') which is at our disposition, (ii) for a given control u, the state y(u) of the system which is to be controlled is given by the solution of an equation (*) Ay(u)=given function ofu where A is an operator (assumed known) which specifies the system to be controlled (A is the 'model' of the system), (iii) the observation z(u) which is a function of y(u) (assumed to be known exactly; we consider only deterministic problems in this book), (iv) the "cost function" J(u) ("economic function") which is defined in terms of a numerical function z-+


Control Theory of Systems Governed by Partial Differential Equations

Control Theory of Systems Governed by Partial Differential Equations

Author: A.K. Aziz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 289

ISBN-13: 1483216306

DOWNLOAD EBOOK

Control Theory of Systems Governed by Partial Differential Equations covers the proceedings of the 1976 Conference by the same title, held at the Naval Surface Weapons Center, Silver Spring, Maryland. The purpose of this conference is to examine the control theory of partial differential equations and its application. This text is divided into five chapters that primarily focus on tutorial lecture series on the theory of optimal control of distributed systems. It describes the many manifestations of the theory and its applications appearing in the other chapters. This work also presents the principles of the duality and asymptotic methods in control theory, including the variational principle for the heat equation. A chapter highlights systems that are not of the linear quadratic type. This chapter also explores the control of free surfaces and the geometrical control variables. The last chapter provides a summary of the features and applications of the numerical approximation of problems of optimal control. This book will prove useful to mathematicians, engineers, and researchers.


Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Author: Irena Lasiecka

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 678

ISBN-13: 9780521434089

DOWNLOAD EBOOK

Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.


Trends in Control Theory and Partial Differential Equations

Trends in Control Theory and Partial Differential Equations

Author: Fatiha Alabau-Boussouira

Publisher: Springer

Published: 2019-07-04

Total Pages: 285

ISBN-13: 3030179494

DOWNLOAD EBOOK

This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.


Mathematical Control of Coupled PDEs

Mathematical Control of Coupled PDEs

Author: Irena Lasiecka

Publisher: SIAM

Published: 2002-01-01

Total Pages: 248

ISBN-13: 0898714869

DOWNLOAD EBOOK

Concentrates on systems of hyperbolic and parabolic coupled PDEs that are nonlinear, solve three key problems.


Control of Higher–Dimensional PDEs

Control of Higher–Dimensional PDEs

Author: Thomas Meurer

Publisher: Springer Science & Business Media

Published: 2012-08-13

Total Pages: 373

ISBN-13: 3642300154

DOWNLOAD EBOOK

This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.


Fourier Series in Control Theory

Fourier Series in Control Theory

Author: Vilmos Komornik

Publisher: Springer Science & Business Media

Published: 2005-01-27

Total Pages: 230

ISBN-13: 0387223835

DOWNLOAD EBOOK

This book is the first serious attempt to gather all of the available theory of "nonharmonic Fourier series" in one place, combining published results with new results by the authors.


Recent Advances in Differential Equations and Control Theory

Recent Advances in Differential Equations and Control Theory

Author: Concepción Muriel

Publisher: Springer Nature

Published: 2021-03-13

Total Pages: 102

ISBN-13: 3030618757

DOWNLOAD EBOOK

This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.


Boundary Control of PDEs

Boundary Control of PDEs

Author: Miroslav Krstic

Publisher: SIAM

Published: 2008-01-01

Total Pages: 197

ISBN-13: 0898718600

DOWNLOAD EBOOK

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.