Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Author: Irena Lasiecka

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 678

ISBN-13: 9780521434089

DOWNLOAD EBOOK

Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.


Control of Partial Differential Equations

Control of Partial Differential Equations

Author: Giuseppe Da Prato

Publisher: CRC Press

Published: 1994-08-19

Total Pages: 302

ISBN-13: 9780824792404

DOWNLOAD EBOOK

This useful reference provides recent results as well as entirely new material on control problems for partial differential equations.


Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations

Author: Fredi Tröltzsch

Publisher: American Mathematical Society

Published: 2024-03-21

Total Pages: 417

ISBN-13: 1470476444

DOWNLOAD EBOOK

Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.


Mathematical Control of Coupled PDEs

Mathematical Control of Coupled PDEs

Author: Irena Lasiecka

Publisher: SIAM

Published: 2002-01-01

Total Pages: 248

ISBN-13: 0898714869

DOWNLOAD EBOOK

Concentrates on systems of hyperbolic and parabolic coupled PDEs that are nonlinear, solve three key problems.


Control Theory of Partial Differential Equations

Control Theory of Partial Differential Equations

Author: Guenter Leugering

Publisher: CRC Press

Published: 2005-05-27

Total Pages: 417

ISBN-13: 1420028316

DOWNLOAD EBOOK

The field of control theory in PDEs has broadened considerably as more realistic models have been introduced and investigated. This book presents a broad range of recent developments, new discoveries, and mathematical tools in the field. The authors discuss topics such as elasticity, thermo-elasticity, aero-elasticity, interactions between fluids a


Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations

Author: Andrea Manzoni

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 507

ISBN-13: 3030772268

DOWNLOAD EBOOK

This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a “hands-on” treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Control of Boundaries and Stabilization

Control of Boundaries and Stabilization

Author: Jacques Simon

Publisher: Springer

Published: 2006-02-06

Total Pages: 278

ISBN-13: 3540461817

DOWNLOAD EBOOK

The present proceedings volume is devoted to two subjects. Stabilization with emphasis on exact controllability: considering a physical system, such as a vibrating plate, one can reach a steady state in a finite time by acting on the boundary. Control of boundaries: given a physical system find the geometry of the domain (optimal shape) which minimizes a cost related to the solution of a boundary value problem in this domain, for example find a minimum drag profile. Many lectures included mathematical analysis as well as engineering applications and numerical simulation.


Control of Distributed Parameter Systems 1989

Control of Distributed Parameter Systems 1989

Author: M. Amouroux

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 533

ISBN-13: 1483298817

DOWNLOAD EBOOK

This volume presents state-of-the-art reports on the theory, and current and future applications of control of distributed parameter systems. The papers cover the progress not only in traditional methodology and pure research in control theory, but also the rapid growth of its importance for different applications. This title will be of interest to researchers working in the areas of mathematics, automatic control, computer science and engineering.


Control Of Nonlinear Distributed Parameter Systems

Control Of Nonlinear Distributed Parameter Systems

Author: Goong Chen

Publisher: CRC Press

Published: 2001-03-14

Total Pages: 380

ISBN-13: 0824745051

DOWNLOAD EBOOK

An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics and its Applications, the University of Minnesota, and Texas A&M University.