Control of Biofilm Infections by Signal Manipulation

Control of Biofilm Infections by Signal Manipulation

Author: Naomi Balaban

Publisher: Springer Science & Business Media

Published: 2007-11-28

Total Pages: 186

ISBN-13: 3540738533

DOWNLOAD EBOOK

The number of patients affected by and dying from what can be considered as a "biofilm disease" is higher than heart disease and cancer combined. Thus, this is a hugely important work that describes the molecular mechanisms of cell-to-cell communication among bacterial cells in a biofilm, the development of antibiofilm inhibitors such as quorum-sensing inhibitors, and the use of biofilm inhibitors to prevent and treat bacterial infections in humans and other animals.


Biofilm Infections

Biofilm Infections

Author: Thomas Bjarnsholt

Publisher: Springer

Published: 2014-10-11

Total Pages: 0

ISBN-13: 9781489982285

DOWNLOAD EBOOK

This book will cover both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as diagnostics and treatment regimes. A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that that less than 0.1% of the total microbial biomass lives in the planktonic mode of growth. The term was coined in 1978 by Costerton et al. who defined the term biofilm for the first time.In 1993 the American Society for Microbiology (ASM) recognised that the biofilmmode of growth was relevant to microbiology. Lately many articles have been published on the clinical implications of bacterial biofilms. Both original articles and reviews concerning the biofilm problem are available.


Bacterial Signal Transduction: Networks and Drug Targets

Bacterial Signal Transduction: Networks and Drug Targets

Author: Ryutaro Utsumi

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 257

ISBN-13: 0387788859

DOWNLOAD EBOOK

This fascinating book encourages many microbiologists and students to enter the new world of signal transduction in microbiology. Over the past decade, a vast amount of exciting new information on the signal transduction pathway in bacteria has been unearthed.


The Science and Applications of Synthetic and Systems Biology

The Science and Applications of Synthetic and Systems Biology

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2011-12-30

Total Pages: 570

ISBN-13: 0309219396

DOWNLOAD EBOOK

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.


Bacteria in Agrobiology: Plant Nutrient Management

Bacteria in Agrobiology: Plant Nutrient Management

Author: Dinesh K. Maheshwari

Publisher: Springer Science & Business Media

Published: 2011-08-17

Total Pages: 352

ISBN-13: 3642210619

DOWNLOAD EBOOK

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. “Bacteria in Agrobiology: Plant Nutrient Management” focus on the management of plant nutrient to support plant growth and development. The topics treated in this book include mechanisms of plant growth promoting rhizobacteria, zinc and phosphate solubilizing microorganisms, sulfur oxidizing bacteria, ACC deaminase, siderophores, phytohormones, quorum-sensing, biofilms, antibiotics, volatiles, denitrification and integrated nutrient management.


Biophysics of Infection

Biophysics of Infection

Author: Mark C. Leake

Publisher: Springer

Published: 2016-05-18

Total Pages: 364

ISBN-13: 3319321897

DOWNLOAD EBOOK

This book describes modern biophysical techniques that enable us to understand and examine dynamic processes of infection at the molecular level. Cutting-edge research articles, laboratory protocols, case studies and up-to-date reviews cover topics such as single-molecule observation of DNA replication repair pathways in E. coli; evolution of drug resistance in bacteria; restriction enzymes as barriers to horizontal gene transfer in Staphylococcus aureus; infectious and bacterial pathogen biofilms; killing infectious pathogens through DNA damage; bacterial surfaces in host-pathogen interactions; bacterial gene regulation by riboswitches; transcription regulation in enterobacterial pathogens; the bacterial flagellar motor; initial surface colonization by bacteria; Salmonella Typhi host restrictions; as well as monitoring proton motive force in bacteria; microbial pathogens using digital holography; mathematical modelling of microbial pathogen motility; neutron reflectivity in studying bacterial membranes; force spectroscopy in studying infection and 4D multi-photon imaging to investigate immune responses. The focus is on the development and application of complex techniques and protocols at the interface of life sciences and physics, which increase the physiological relevance of biophysical investigations.


Antimicrobial and Antiviral Materials

Antimicrobial and Antiviral Materials

Author: Peerawatt Nunthavarawong

Publisher: CRC Press

Published: 2022-05-19

Total Pages: 251

ISBN-13: 1000541215

DOWNLOAD EBOOK

Emerging microbial and viral infections are a serious challenge to health, safety, and economics around the world. Antimicrobial and antiviral technologies are needed to disrupt the progression and replication of bacteria and viruses and to counter their rapidly evolving resistance. This book discusses recent developments in materials science and engineering in combating infectious diseases and explores advances in antimicrobial and antiviral materials, including polymers, metals, and ceramics and their applications in the fight against pathogens. Features • Covers progress in biomimetic antimicrobial and antiviral materials and antimicrobial/antiviral bulk materials and coatings • Describes modern methods for disinfection of biomedical materials against microbial and viral infection resistance, especially for depressing novel coronavirus (COVID-19) • Details methods to improve material properties to have a longer service life in combating infection • Emphasizes chemical, physical, mechanical, tribological, and antimicrobial/antiviral properties • Offers current and future applications of emerging antimicrobial/antiviral technologies This book will be of interest to materials researchers and industry professionals focusing on antimicrobial and antiviral applications.


Microbial Mats

Microbial Mats

Author: Joseph Seckbach

Publisher: Springer

Published: 2012-09-05

Total Pages: 606

ISBN-13: 9789400732414

DOWNLOAD EBOOK

This book provides information about microbial mats, from early fossils to modern mats located in marine and terrestrial environments. Microbial mats – layered biofilms containing different types of cells – are most complex systems in which representatives of various groups of organisms are found together. Among them are cyanobacteria and eukaryotic phototrophs, aerobic heterotrophic and chemoautotrophic bacteria, protozoa, anoxygenic photosynthetic bacteria, and other types of microorganisms. These mats are perfect models for biogeochemical processes, such as the cycles of chemical elements, in which a variety of microorganisms cooperate and interact in complex ways. They are often found under extreme conditions and their study contributes to our understanding of extremophilic life. Moreover, microbial mats are models for Precambrian stromatolites; the study of modern microbial mats may provide information on the processes that may have occurred on Earth when prokaryotic life began to spread.


Nanostructures for Antimicrobial and Antibiofilm Applications

Nanostructures for Antimicrobial and Antibiofilm Applications

Author: Ram Prasad

Publisher: Springer Nature

Published: 2020-05-12

Total Pages: 461

ISBN-13: 3030403378

DOWNLOAD EBOOK

In the pursuit of technological advancement in the field of biotechnology and pharmaceutical industries to counteract health issues, bacterial infections remain a major cause of morbidity and mortality. The ability of bacterial pathogens to form biofilms further agglomerates the situation by showing resistance to conventional antibiotics. To overcome this serious issue, bioactive metabolites and other natural products were exploited to combat bacterial infections and biofilm-related health consequences. Natural products exhibited promising results in vitro, however; their efficacy in in vivo conditions remain obscured due to their low-solubility, bioavailability, and biocompatibility issues. In this scenario, nanotechnological interventions provide a multifaceted platform for targeted delivery of bioactive compounds by slow and sustained release of drug-like compounds. The unique physico-chemical properties, biocompatibility and eco-friendly nature of bioinspired nanostructures has revolutionized the field of biology to eradicate microbial infections and biofilm-related complications. The green-nanotechnology based metal and metal oxide nanoparticles and polymeric nanoparticles have been regularly employed for antimicrobial and antibiofilm applications without causing damage to host tissues. The implications of these nanoparticles toward achieving sustainability in agriculture by providing systemic resistance against a variety of phytopathogens therefore plays crucial role in growth and crop productivity. Also the advent of smart and hybrid nanomaterials such as metal-based polymer nanocomposites, lipid-based nanomaterials and liposomes have the inherent potential to eradicate bacterial biofilm-related infections in an efficient manner. The recent development of carbon-based nanomaterials such as carbon nanotubes (CNTs) and silica based nanomaterials such as mesoporous silica nanoparticles (MSNs) also exploit a target of dreadful healthcare conditions such as cancer, immunomodulatory diseases, and microbial infections, as well as biofilm-related issues owing to their stability profile, biocompatibility, and unique physio-chemical properties. Recently novel physical approaches such as photothermal therapy (PTT) and antimicrobial photodynamic therapy (aPDT) also revolutionized conventional strategies and are engaged in eradicating microbial biofilm-related infections and related health consequences. These promising advancements in the development of novel strategies to treat microbial infections and biofilm-related multidrug resistance (MDR) phenomenon may provide new avenues and aid to conventional antimicrobial therapeutics.