Geometric Methods in Inverse Problems and PDE Control

Geometric Methods in Inverse Problems and PDE Control

Author: Chrisopher B. Croke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 334

ISBN-13: 1468493752

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.


Control And Inverse Problems For Partial Differential Equations

Control And Inverse Problems For Partial Differential Equations

Author: Gang Bao

Publisher: World Scientific

Published: 2019-04-03

Total Pages: 263

ISBN-13: 9813276169

DOWNLOAD EBOOK

This book is a collection of lecture notes for the LIASFMA Hangzhou Autumn School on 'Control and Inverse Problems for Partial Differential Equations' which was held during October 17-22, 2016 at Zhejiang University, Hangzhou, China. This autumn school is one of the activities organized by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA). Established jointly by eight institutions in China and France in 2014, LIASFMA aims at providing a platform for many leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in broad areas of applied mathematics.The book provides the readers with a unique and valuable opportunity to learn from and communicate with leading experts in control and inverse problems. And the readers are exposed not only to the basic theories and methods but also to the forefront of research directions in both fields.


Deterministic and Stochastic Optimal Control and Inverse Problems

Deterministic and Stochastic Optimal Control and Inverse Problems

Author: Baasansuren Jadamba

Publisher: CRC Press

Published: 2021-12-15

Total Pages: 394

ISBN-13: 1000511723

DOWNLOAD EBOOK

Inverse problems of identifying parameters and initial/boundary conditions in deterministic and stochastic partial differential equations constitute a vibrant and emerging research area that has found numerous applications. A related problem of paramount importance is the optimal control problem for stochastic differential equations. This edited volume comprises invited contributions from world-renowned researchers in the subject of control and inverse problems. There are several contributions on optimal control and inverse problems covering different aspects of the theory, numerical methods, and applications. Besides a unified presentation of the most recent and relevant developments, this volume also presents some survey articles to make the material self-contained. To maintain the highest level of scientific quality, all manuscripts have been thoroughly reviewed.


Optimization and Control for Partial Differential Equations

Optimization and Control for Partial Differential Equations

Author: Roland Herzog

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-03-07

Total Pages: 474

ISBN-13: 3110695987

DOWNLOAD EBOOK

This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.


Computational Methods for Inverse Problems

Computational Methods for Inverse Problems

Author: Curtis R. Vogel

Publisher: SIAM

Published: 2002-01-01

Total Pages: 195

ISBN-13: 0898717574

DOWNLOAD EBOOK

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.


Carleman Estimates for Second Order Partial Differential Operators and Applications

Carleman Estimates for Second Order Partial Differential Operators and Applications

Author: Xiaoyu Fu

Publisher: Springer Nature

Published: 2019-10-31

Total Pages: 136

ISBN-13: 3030295303

DOWNLOAD EBOOK

This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.


Inverse Problems and Related Topics

Inverse Problems and Related Topics

Author: Jin Cheng

Publisher: Springer Nature

Published: 2020-02-04

Total Pages: 310

ISBN-13: 9811515921

DOWNLOAD EBOOK

This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.


Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation

Author: Albert Tarantola

Publisher: SIAM

Published: 2005-01-01

Total Pages: 349

ISBN-13: 9780898717921

DOWNLOAD EBOOK

While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.


Dynamical Inverse Problems: Theory and Application

Dynamical Inverse Problems: Theory and Application

Author: Graham M. L. Gladwell

Publisher: Springer Science & Business Media

Published: 2011-05-25

Total Pages: 229

ISBN-13: 3709106966

DOWNLOAD EBOOK

The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.


Numerical Solution of Partial Differential Equations in Science and Engineering

Numerical Solution of Partial Differential Equations in Science and Engineering

Author: Leon Lapidus

Publisher: John Wiley & Sons

Published: 2011-02-14

Total Pages: 677

ISBN-13: 1118031210

DOWNLOAD EBOOK

From the reviews of Numerical Solution of PartialDifferential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, evenexhaustive, survey of the subject . . . [It] is unique in that itcovers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic)mode of presentation. Many different computational schemes aredescribed in great detail . . . Numerous practical examples andapplications are described from beginning to the end, often withcalculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages tolucid developments of the methods [for solving partial differentialequations] . . . the writing is very polished and I found it apleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen andEli L. Isaacson. A modern, practical look at numerical analysis,this book guides readers through a broad selection of numericalmethods, implementation, and basic theoretical results, with anemphasis on methods used in scientific computation involvingdifferential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan.Presenting an easily accessible treatment of mathematical methodsfor scientists and engineers, this acclaimed work covers fluidmechanics and calculus of variations as well as more modernmethods-dimensional analysis and scaling, nonlinear wavepropagation, bifurcation, and singular perturbation. 1996(0-471-16513-1) 496 pp.