Quantization on Nilpotent Lie Groups

Quantization on Nilpotent Lie Groups

Author: Veronique Fischer

Publisher: Birkhäuser

Published: 2016-03-08

Total Pages: 568

ISBN-13: 3319295586

DOWNLOAD EBOOK

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.


Contributions to Group Theory

Contributions to Group Theory

Author: Kenneth I. Appel

Publisher: American Mathematical Soc.

Published: 1984

Total Pages: 534

ISBN-13: 0821850350

DOWNLOAD EBOOK

Contains five short articles about Roger Lyndon and his contributions to mathematics, as well as twenty-seven invited research papers in combinatorial group theory and closely related areas. Several of the articles featured in this work fall into subfields of combinatorial group theory, areas in which much of the initial work was done by Lyndon.


Nilpotent Groups and their Automorphisms

Nilpotent Groups and their Automorphisms

Author: Evgenii I. Khukhro

Publisher: Walter de Gruyter

Published: 2011-04-20

Total Pages: 269

ISBN-13: 3110846217

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany


A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory

Author: Peter Webb

Publisher: Cambridge University Press

Published: 2016-08-19

Total Pages: 339

ISBN-13: 1107162394

DOWNLOAD EBOOK

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.


Contributions to Algebra

Contributions to Algebra

Author: Hyman Bass

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 447

ISBN-13: 1483268063

DOWNLOAD EBOOK

Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin provides information pertinent to commutative algebra, linear algebraic group theory, and differential algebra. This book covers a variety of topics, including complex analysis, logic, K-theory, stochastic matrices, and differential geometry. Organized into 29 chapters, this book begins with an overview of the influence that Ellis Kolchin's work on the Galois theory of differential fields has had on the development of differential equations. This text then discusses the background model theoretic work in differential algebra and discusses the notion of model completions. Other chapters consider some properties of differential closures and some immediate consequences and include extensive notes with proofs. This book discusses as well the problems in finite group theory in finding the complex finite projective groups of a given degree. The final chapter deals with the finite forms of quasi-simple algebraic groups. This book is a valuable resource for students.


Matrix Groups

Matrix Groups

Author: Dmitriĭ Alekseevich Suprunenko

Publisher: American Mathematical Soc.

Published: 1976

Total Pages: 264

ISBN-13: 9780821813416

DOWNLOAD EBOOK

This volume is a translation from the Russian of D.A. Suprunenko's book which was published in the Soviet Union in 1972. The translation was edited by K.A. Hirsch. The book gives an account of the classical results on the structure of normal subgroups of the general linear group over a division ring, of Burnside's and Schur's theorems on periodic linear groups, and of the theorem on the normal structure of SL(n, Z) for n >2. The theory of solvable, nilpotent, and locally nilpotent linear groups is also discussed.


Global Analysis

Global Analysis

Author: Shiing-Shen Chern

Publisher: American Mathematical Soc.

Published: 1970-12-31

Total Pages: 378

ISBN-13: 0821814141

DOWNLOAD EBOOK