Contributions in Analytic and Algebraic Number Theory

Contributions in Analytic and Algebraic Number Theory

Author: Valentin Blomer

Publisher: Springer Science & Business Media

Published: 2011-11-19

Total Pages: 301

ISBN-13: 1461412196

DOWNLOAD EBOOK

The text that comprises this volume is a collection of surveys and original works from experts in the fields of algebraic number theory, analytic number theory, harmonic analysis, and hyperbolic geometry. A portion of the collected contributions have been developed from lectures given at the "International Conference on the Occasion of the 60th Birthday of S. J. Patterson", held at the University Göttingen, July 27-29 2009. Many of the included chapters have been contributed by invited participants. This volume presents and investigates the most recent developments in various key topics in analytic number theory and several related areas of mathematics. The volume is intended for graduate students and researchers of number theory as well as applied mathematicians interested in this broad field.


Analytic Number Theory

Analytic Number Theory

Author: Yoichi Motohashi

Publisher: Cambridge University Press

Published: 1997-10-16

Total Pages: 396

ISBN-13: 0521625122

DOWNLOAD EBOOK

Authoritative, up-to-date review of analytic number theory containing outstanding contributions from leading international figures.


Classical Theory of Algebraic Numbers

Classical Theory of Algebraic Numbers

Author: Paulo Ribenboim

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 676

ISBN-13: 0387216901

DOWNLOAD EBOOK

The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.


Problems in Algebraic Number Theory

Problems in Algebraic Number Theory

Author: M. Ram Murty

Publisher: Springer Science & Business Media

Published: 2005-09-28

Total Pages: 354

ISBN-13: 0387269983

DOWNLOAD EBOOK

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved


Introduction to Analytic Number Theory

Introduction to Analytic Number Theory

Author: Tom M. Apostol

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 352

ISBN-13: 1475755791

DOWNLOAD EBOOK

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS


Lectures on the Theory of Algebraic Numbers

Lectures on the Theory of Algebraic Numbers

Author: E. T. Hecke

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 251

ISBN-13: 1475740921

DOWNLOAD EBOOK

. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.


A Brief Guide to Algebraic Number Theory

A Brief Guide to Algebraic Number Theory

Author: H. P. F. Swinnerton-Dyer

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 164

ISBN-13: 9780521004237

DOWNLOAD EBOOK

Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.


Number Theory and Algebraic Geometry

Number Theory and Algebraic Geometry

Author: Miles Reid

Publisher: Cambridge University Press

Published: 2003

Total Pages: 312

ISBN-13: 9780521545181

DOWNLOAD EBOOK

This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.


Algebraic Geometry and Number Theory

Algebraic Geometry and Number Theory

Author: victor ginzburg

Publisher: Springer Science & Business Media

Published: 2007-12-31

Total Pages: 656

ISBN-13: 0817645322

DOWNLOAD EBOOK

This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.


Directions in Number Theory

Directions in Number Theory

Author: Ellen E. Eischen

Publisher: Springer

Published: 2016-09-26

Total Pages: 351

ISBN-13: 3319309765

DOWNLOAD EBOOK

Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students.