Two aspects of anthropogenic impacts on the atmosphere are investigated using means of numerical weather prediction. A case study is conducted to estimate the impact of such artificial clouds on the incoming solar radiation at the Earth's surface with special regard to photovoltaic power production. Furthermore, simulations are performed to assess the efficacy of injecting particles into the Arctic troposphere with the aim of modifying cirrus clouds for counteracting global warming.
This Intergovernmental Panel on Climate Change Special Report is the most comprehensive assessment available on the effects of aviation on the global atmosphere. The report considers all the gases and particles emitted by aircraft that modify the chemical properties of the atmosphere, leading to changes in radiative properties and climate change, and modification of the ozone layer, leading to changes in ultraviolet radiation reaching the Earth. This volume provides accurate, unbiased, policy-relevant information and is designed to serve the aviation industry and the expert and policymaking communities.
This book details the actual accounts of 20 military aircraft crashes that occurred in the remote deserts and rugged highlands of Arizona. Each story looks into the events leading up to and after the crash, and describes what is left at the site today. These facts are corroborated by newly-declassified, old government documents, personal visits to the crash sites, and interviews with surviving crewman and families.
Aircraft emissions lead to contrails and change cloud coverage in the upper troposphere/lower stratosphere, but their quantitative impact on climate is highly uncertain. As environmental policy turns toward regulating anthropogenic climate change components, it will be necessary to improve quantification of the climate impacts of aviation. Toward this end, we present two models of aircraft emissions. The first model is a large eddy simulation (LES) with three-dimensional, eddy-resolving flow physics and ice deposition/sublimation microphysics. Modeled ice properties, cloud optical depths, and contrail width growth rates are consistent with observational field studies. A series of sensitivity cases shows the effect of various parameters over twenty minutes of simulation time. The analysis focuses on properties such as contrail optical depth and cross-sectional width that are relevant to climate impacts. Vertical wind shear is found to have the strongest effect on these properties through the kinematic spreading of the contrail. In cases with no shear, optical depth is most sensitive to aircraft type and ambient humidity. One model parameter, the effective emission index of ice crystals, is also found to affect optical depth. A subset of the LES cases is run for two hours of simulation time to approach the scale of dynamical time steps modeled by global climate simulations. These cases use more realistic ice microphysics, including sedimentation, and forced ambient turbulence, both of which are processes that control contrail development at late times. The second model is a simple, low cost parameterization of aircraft plume dynamics, intended to be used as a subgrid plume model (SPM) within large scale atmospheric simulations. The SPM provides basic plume cross-section time advancement that has been used as a dilution model within a coupled global atmosphere-ocean climate simulation to study the effects of aviation on air quality and climate. Comparison to the twenty-minute and two-hour LES results demonstrates that the SPM captures important plume development characteristics under the effect of vertical shear and atmospheric turbulence.
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Green Aviation is the first authoritative overview of both engineering and operational measures to mitigate the environmental impact of aviation. It addresses the current status of measures to reduce the environmental impact of air travel. The chapters cover such items as: Engineering and technology-related subjects (aerodynamics, engines, fuels, structures, etc.), Operations (air traffic management and infrastructure) Policy and regulatory aspects regarding atmospheric and noise pollution. With contributions from leading experts, this volume is intended to be a valuable addition, and useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.
On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.