Continuum Mechanics - Volume III

Continuum Mechanics - Volume III

Author: José Merodio

Publisher: EOLSS Publications

Published: 2011-11-30

Total Pages: 388

ISBN-13: 1848263740

DOWNLOAD EBOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.


Introduction to Continuum Mechanics

Introduction to Continuum Mechanics

Author: David Rubin

Publisher: Newnes

Published: 2012-12-02

Total Pages: 571

ISBN-13: 0080983871

DOWNLOAD EBOOK

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.


Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials

Author: Peter Haupt

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 666

ISBN-13: 3662047756

DOWNLOAD EBOOK

The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.


Continuum Mechanics

Continuum Mechanics

Author: Fridtjov Irgens

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 667

ISBN-13: 3540742980

DOWNLOAD EBOOK

This book presents an introduction into the entire science of Continuum Mechanics in three parts. The presentation is modern and comprehensive. Its introduction into tensors is very gentle. The book contains many examples and exercises, and is intended for scientists, practitioners and students of mechanics.


Continuum Mechanics with Eulerian Formulations of Constitutive Equations

Continuum Mechanics with Eulerian Formulations of Constitutive Equations

Author: M.B. Rubin

Publisher: Springer Nature

Published: 2020-10-11

Total Pages: 284

ISBN-13: 3030577767

DOWNLOAD EBOOK

This book focuses on the need for an Eulerian formulation of constitutive equations. After introducing tensor analysis using both index and direct notation, nonlinear kinematics of continua is presented. The balance laws of the purely mechanical theory are discussed along with restrictions on constitutive equations due to superposed rigid body motion. The balance laws of the thermomechanical theory are discussed and specific constitutive equations are presented for: hyperelastic materials; elastic–inelastic materials; thermoelastic–inelastic materials with application to shock waves; thermoelastic–inelastic porous materials; and thermoelastic–inelastic growing biological tissues.


Continuum Mechanics - Volume II

Continuum Mechanics - Volume II

Author: José Merodio

Publisher: EOLSS Publications

Published: 2011-11-30

Total Pages: 446

ISBN-13: 1848263732

DOWNLOAD EBOOK

The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.


An Introduction to Continuum Mechanics

An Introduction to Continuum Mechanics

Author: Morton E. Gurtin

Publisher: Academic Press

Published: 1982-01-12

Total Pages: 279

ISBN-13: 0080918492

DOWNLOAD EBOOK

This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure


Advanced Methods of Continuum Mechanics for Materials and Structures

Advanced Methods of Continuum Mechanics for Materials and Structures

Author: Konstantin Naumenko

Publisher: Springer

Published: 2016-05-12

Total Pages: 555

ISBN-13: 9811009597

DOWNLOAD EBOOK

This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.


Continuum Mechanics

Continuum Mechanics

Author: A. J. M. Spencer

Publisher: Courier Corporation

Published: 2012-06-08

Total Pages: 194

ISBN-13: 0486139476

DOWNLOAD EBOOK

Undergraduate text offers an analysis of deformation and stress, covers laws of conservation of mass, momentum, and energy, and surveys the formulation of mechanical constitutive equations. 1992 edition.


Continuum Mechanics

Continuum Mechanics

Author: C. S. Jog

Publisher: Cambridge University Press

Published: 2015-06-25

Total Pages: 877

ISBN-13: 1107091357

DOWNLOAD EBOOK

Moving on to derivation of the governing equations, this book presents applications in the areas of linear and nonlinear elasticity.