Continuing Investigations for Technology Assessment of 99Mo Production from LEU (low Enriched Uranium) Targets

Continuing Investigations for Technology Assessment of 99Mo Production from LEU (low Enriched Uranium) Targets

Author:

Publisher:

Published: 1987

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.


Preliminary Investigations for Technology Assessment of 99Mo Production from LEU (low Enriched Uranium) Targets. [For Production of

Preliminary Investigations for Technology Assessment of 99Mo Production from LEU (low Enriched Uranium) Targets. [For Production of

Author:

Publisher:

Published: 1986

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99Mo. Issues that were addressed are: (1) purity and yield of the 99Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99Mo production. 37 refs., 1 fig., 5 tabs.


Molybdenum-99 for Medical Imaging

Molybdenum-99 for Medical Imaging

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-28

Total Pages: 264

ISBN-13: 0309445310

DOWNLOAD EBOOK

The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.


Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium

Author: National Research Council

Publisher: National Academies Press

Published: 2009-06-27

Total Pages: 220

ISBN-13: 0309130395

DOWNLOAD EBOOK

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.


Opportunities and Approaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets

Opportunities and Approaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-03-12

Total Pages: 87

ISBN-13: 030946627X

DOWNLOAD EBOOK

Participants of the July 17-18, 2017, symposium titled Opportunities and Approaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets examined current trends in molybdenum-99 production, prospects for new global supplies, and technical, economic, regulatory, and other considerations for supplying molybdenum-99 to global markets. This publication summarizes the presentations and discussions from the symposium.


Low-enriched Uranium High-density Target Project. Compendium Report

Low-enriched Uranium High-density Target Project. Compendium Report

Author:

Publisher:

Published: 2016

Total Pages: 675

ISBN-13:

DOWNLOAD EBOOK

At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 μm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world's supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.


Medical Isotope Production Without Highly Enriched Uranium

Medical Isotope Production Without Highly Enriched Uranium

Author: National Research Council

Publisher: National Academies Press

Published: 2009-05-27

Total Pages: 221

ISBN-13: 0309141095

DOWNLOAD EBOOK

This book is the product of a congressionally mandated study to examine the feasibility of eliminating the use of highly enriched uranium (HEU2) in reactor fuel, reactor targets, and medical isotope production facilities. The book focuses primarily on the use of HEU for the production of the medical isotope molybdenum-99 (Mo-99), whose decay product, technetium-99m3 (Tc-99m), is used in the majority of medical diagnostic imaging procedures in the United States, and secondarily on the use of HEU for research and test reactor fuel. The supply of Mo-99 in the U.S. is likely to be unreliable until newer production sources come online. The reliability of the current supply system is an important medical isotope concern; this book concludes that achieving a cost difference of less than 10 percent in facilities that will need to convert from HEU- to LEU-based Mo-99 production is much less important than is reliability of supply.


Development and Processing of LEU Targets for 99Mo Production-overview of the ANL Program

Development and Processing of LEU Targets for 99Mo Production-overview of the ANL Program

Author:

Publisher:

Published: 1995

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

Most of the world's supply of {sup 99m}Tc for medical purposes is currently produced from the decay of 99Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) silicide fuel for the HEU alloy and aluminide fuels used in most current target designs will allow equivalent 99Mo yields with little change in target geometries. Substitution of uranium metal for uranium oxide films in other target designs will also allow the substitution of LEU for HEU. During 1995, we have continued to study the modification of current targets and processes to allow the conversion from HEU to LEU. A uranium-metal-foil target was fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination indicated that minor design modifications will be required to allow the irradiated foil to be removed for chemical processing. Means to dissolve and process LEU foil have been developed, and a mock LEU foil target was processed in Indonesia. We have also developed means to dissolve the LEU foil in alkaline peroxide, where it can be used to replace HEU targets that are currently dissolved in base before recovering and purifying the 99Mo. We have also continued work on the dissolution of U3Si2 and have a firm foundation on dissolving these targets in alkaline peroxide. The technology-exchange agreement with Indonesia is well underway, and we hope to expand our international cooperations in 1996.


Nuclear Energy Basic Principles

Nuclear Energy Basic Principles

Author: International Atomic Energy Agency

Publisher:

Published: 2008

Total Pages: 0

ISBN-13: 9789201126085

DOWNLOAD EBOOK

Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.