Contact Geometry and Linear Differential Equations

Contact Geometry and Linear Differential Equations

Author: Vladimir E. Nazaikinskii

Publisher: Walter de Gruyter

Published: 2011-04-20

Total Pages: 229

ISBN-13: 3110873109

DOWNLOAD EBOOK

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)


Contact Geometry and Non-linear Differential Equations

Contact Geometry and Non-linear Differential Equations

Author: Alexei Kushner

Publisher:

Published: 2007

Total Pages: 496

ISBN-13: 9781107387447

DOWNLOAD EBOOK

Methods from contact and symplectic geometry can be used to solve highly non-trivial nonlinear partial and ordinary differential equations without resorting to approximate numerical methods or algebraic computing software. This book explains how it's done. It combines the clarity and accessibility of an advanced textbook with the completeness of an encyclopedia. The basic ideas that Lie and Cartan developed at the end of the nineteenth century to transform solving a differential equation into a problem in geometry or algebra are here reworked in a novel and modern way. Differential equations are considered as a part of contact and symplectic geometry, so that all the machinery of Hodge-deRham calculus can be applied. In this way a wide class of equations can be tackled, including quasi-linear equations and Monge-Ampere equations (which play an important role in modern theoretical physics and meteorology).


First Steps in Differential Geometry

First Steps in Differential Geometry

Author: Andrew McInerney

Publisher: Springer Science & Business Media

Published: 2013-07-09

Total Pages: 420

ISBN-13: 1461477328

DOWNLOAD EBOOK

Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.


An Introduction to Contact Topology

An Introduction to Contact Topology

Author: Hansjörg Geiges

Publisher: Cambridge University Press

Published: 2008-03-13

Total Pages: 8

ISBN-13: 1139467956

DOWNLOAD EBOOK

This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.


Differential Geometry and Its Applications

Differential Geometry and Its Applications

Author: John Oprea

Publisher: American Mathematical Soc.

Published: 2019-02-06

Total Pages: 469

ISBN-13: 147045050X

DOWNLOAD EBOOK

Differential Geometry and Its Applications studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole. It mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. That mix of ideas offers students the opportunity to visualize concepts through the use of computer algebra systems such as Maple. Differential Geometry and Its Applications emphasizes that this visualization goes hand in hand with understanding the mathematics behind the computer construction. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.


Linear Differential Equations and Group Theory from Riemann to Poincare

Linear Differential Equations and Group Theory from Riemann to Poincare

Author: Jeremy Gray

Publisher: Springer Science & Business Media

Published: 2010-01-07

Total Pages: 357

ISBN-13: 0817647732

DOWNLOAD EBOOK

This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.


Differential Geometry: Partial Differential Equations on Manifolds

Differential Geometry: Partial Differential Equations on Manifolds

Author: Robert Everist Greene

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 585

ISBN-13: 082181494X

DOWNLOAD EBOOK

The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem