Consumer Data Research

Consumer Data Research

Author: Paul Longley

Publisher: UCL Press

Published: 2018-04-30

Total Pages: 198

ISBN-13: 1787353885

DOWNLOAD EBOOK

Big Data collected by customer-facing organisations – such as smartphone logs, store loyalty card transactions, smart travel tickets, social media posts, or smart energy meter readings – account for most of the data collected about citizens today. As a result, they are transforming the practice of social science. Consumer Big Data are distinct from conventional social science data not only in their volume, variety and velocity, but also in terms of their provenance and fitness for ever more research purposes. The contributors to this book, all from the Consumer Data Research Centre, provide a first consolidated statement of the enormous potential of consumer data research in the academic, commercial and government sectors – and a timely appraisal of the ways in which consumer data challenge scientific orthodoxies. Praise for Consumer Data Research 'An insightful, state-of-the-art guide into the social and commercial value of applying geographical thinking to the study of consumer data.' Professor Richard Harris, University of Bristol 'An excellent guide to leveraging the value of academic research on valid data. Partnerships based around consumer data should be encouraged and supported by all and their outputs used to better the way we manage the world we live in.' Bill Grimsey, retailer and author of The Vanishing Highstreet 'The use of data from everyday consumer transactions is a potential game-changer for understanding economic and social patterns and trends. This is an excellent overview of the field.' Dr.Tom Smith, Managing Director, Office for National Statistics Data Science Campus


Statistics for Marketing and Consumer Research

Statistics for Marketing and Consumer Research

Author: Mario Mazzocchi

Publisher: SAGE

Published: 2008-05-22

Total Pages: 433

ISBN-13: 1446204014

DOWNLOAD EBOOK

Balancing simplicity with technical rigour, this practical guide to the statistical techniques essential to research in marketing and related fields, describes each method as well as showing how they are applied. The book is accompanied by two real data sets to replicate examples and with exercises to solve, as well as detailed guidance on the use of appropriate software including: - 750 powerpoint slides with lecture notes and step-by-step guides to run analyses in SPSS (also includes screenshots) - 136 multiple choice questions for tests This is augmented by in-depth discussion of topics including: - Sampling - Data management and statistical packages - Hypothesis testing - Cluster analysis - Structural equation modelling


Consumer Insight

Consumer Insight

Author: Merlin Stone

Publisher: Kogan Page Publishers

Published: 2004

Total Pages: 308

ISBN-13: 9780749442927

DOWNLOAD EBOOK

Provides comprehensive coverage of the classic areas that market researchers and marketers need to focus on.


Big Data for Twenty-First-Century Economic Statistics

Big Data for Twenty-First-Century Economic Statistics

Author: Katharine G. Abraham

Publisher: University of Chicago Press

Published: 2022-03-11

Total Pages: 502

ISBN-13: 022680125X

DOWNLOAD EBOOK

Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.


Data Management for Researchers

Data Management for Researchers

Author: Kristin Briney

Publisher: Pelagic Publishing Ltd

Published: 2015-09-01

Total Pages: 312

ISBN-13: 178427013X

DOWNLOAD EBOOK

A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin


Business and Consumer Analytics: New Ideas

Business and Consumer Analytics: New Ideas

Author: Pablo Moscato

Publisher: Springer

Published: 2019-05-30

Total Pages: 1000

ISBN-13: 3030062228

DOWNLOAD EBOOK

This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.


Studies in Consumer Demand — Econometric Methods Applied to Market Data

Studies in Consumer Demand — Econometric Methods Applied to Market Data

Author: Jeffrey A. Dubin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 306

ISBN-13: 1461556651

DOWNLOAD EBOOK

Studies in Consumer Demand - Econometric Methods Applied to Market Data contains eight previously unpublished studies of consumer demand. Each study stands on its own as a complete econometric analysis of demand for a well-defined consumer product. The econometric methods range from simple regression techniques applied in the first four chapters, to the use of logit and multinomial logit models used in chapters 5 and 6, to the use of nested logit models in chapters 6 and 7, and finally to the discrete/continuous modeling methods used in chapter 8. Emphasis is on applications rather than econometric theory. In each case, enough detail is provided for the reader to understand the purpose of the analysis, the availability and suitability of data, and the econometric approach to measuring demand.


Methods in Consumer Research, Volume 1

Methods in Consumer Research, Volume 1

Author: Gaston Ares

Publisher: Woodhead Publishing

Published: 2018-01-02

Total Pages: 652

ISBN-13: 0081012586

DOWNLOAD EBOOK

Methods for Consumer Research, Volume One: New Approaches to Classic Methods brings together world leading experts in global consumer research who provide a fully comprehensive state-of-the-art coverage of advances in the classical methods of consumer science. The book touches on the latest developments in qualitative techniques, including coverage of both focus groups and social media, while also focusing on liking, a fundamental principle of consumer science, consumer segmentation, and the influence of extrinsic product characteristics, such as packaging and presentation on consumer liking. In conjunction with the second volume, which covers alternative approaches and special applications, this book is an invaluable reference for academics working in the fields of in-sensory and consumer science, psychology, marketing and nutrition. And, with examples of the methodology being applied throughout, it serves as a practical guide to research and development managers in both food and non-food companies. - Presents a fully comprehensive coverage of the latest developments in the classical methodologies of consumer research - Provides examples of successful application of the methodologies presented - Includes focus groups and social media discussions - Encompasses consumer segmentation, with a focus on psychographics and genetics


Neuromarketing and Big Data Analytics for Strategic Consumer Engagement: Emerging Research and Opportunities

Neuromarketing and Big Data Analytics for Strategic Consumer Engagement: Emerging Research and Opportunities

Author: de Sousa, Joana Coutinho

Publisher: IGI Global

Published: 2017-12-30

Total Pages: 211

ISBN-13: 1522548351

DOWNLOAD EBOOK

A new sub-area of marketing is emerging called neuromarketing. It combines psychology, neuroscience, and economics with the study of consumer motivations. This is leading to the creation of new technological approaches that enable companies to read the customer's mind and tailor marketing practices, products, and services. Neuromarketing and Big Data Analytics for Strategic Consumer Engagement: Emerging Research and Opportunities provides emerging information on the issues involved in the field of neuromarketing, including models, technologies, and the methodology of this field. Highlighting the intricacies of neuroscience, biometrics, multimedia technology, marketing strategy, and big data management, this book is an ideal resource for researchers, neuroscientists, marketers, suppliers, customers, and investors seeking current research on the integration of new neuromarketing trends and technologies.


Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing

Author: Singh, Amandeep

Publisher: IGI Global

Published: 2021-06-18

Total Pages: 310

ISBN-13: 1799872335

DOWNLOAD EBOOK

The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.