Constructive Measure Theory
Author: Errett Bishop
Publisher: American Mathematical Soc.
Published: 1972
Total Pages: 95
ISBN-13: 0821818163
DOWNLOAD EBOOKRead and Download eBook Full
Author: Errett Bishop
Publisher: American Mathematical Soc.
Published: 1972
Total Pages: 95
ISBN-13: 0821818163
DOWNLOAD EBOOKAuthor: Terence Tao
Publisher: American Mathematical Soc.
Published: 2021-09-03
Total Pages: 206
ISBN-13: 1470466406
DOWNLOAD EBOOKThis is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Author: Yuen-Kwok Chan
Publisher: Cambridge University Press
Published: 2021-05-27
Total Pages: 627
ISBN-13: 1108835430
DOWNLOAD EBOOKThis book provides a systematic and general theory of probability within the framework of constructive mathematics.
Author: M.J. Beeson
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 484
ISBN-13: 3642689523
DOWNLOAD EBOOKThis book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.
Author: Errett Bishop
Publisher: Ishi Press
Published: 2012-07
Total Pages: 404
ISBN-13: 9784871877145
DOWNLOAD EBOOKThis book, Foundations of Constructive Analysis, founded the field of constructive analysis because it proved most of the important theorems in real analysis by constructive methods. The author, Errett Albert Bishop, born July 10, 1928, was an American mathematician known for his work on analysis. In the later part of his life Bishop was seen as the leading mathematician in the area of Constructive mathematics. From 1965 until his death, he was professor at the University of California at San Diego.
Author: Marek Capinski
Publisher: Springer Science & Business Media
Published: 2013-06-29
Total Pages: 229
ISBN-13: 1447136314
DOWNLOAD EBOOKThis very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Author: Sheldon Axler
Publisher: Springer Nature
Published: 2019-11-29
Total Pages: 430
ISBN-13: 3030331431
DOWNLOAD EBOOKThis open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Author: Steven G. Krantz
Publisher: Springer Science & Business Media
Published: 2008-12-15
Total Pages: 344
ISBN-13: 0817646795
DOWNLOAD EBOOKThis textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Author: Vladimir I. Bogachev
Publisher: Springer Science & Business Media
Published: 2007-01-15
Total Pages: 1075
ISBN-13: 3540345140
DOWNLOAD EBOOKThis book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Author: Douglas Bridges
Publisher: Cambridge University Press
Published: 2023-03-31
Total Pages: 863
ISBN-13: 1316510867
DOWNLOAD EBOOKGives a complete overview of modern constructive mathematics and its applications through surveys by leading experts.